Optimizing Vehicle Routing for Perishable Products with Time Window Constraints:
A Case Study on Bread Distribution
Keywords:
Capacitated vehicle routing problem with time windows, Bread distribution, Simulated annealing, Adaptive large neighborhood search, Genetic algorithmAbstract
This research investigates the application of optimization methods to the Capacitated Vehicle Routing Problem with Time Windows in the context of bread distribution for the efficiency of different approach for managing large-scale goods delivery. Managing this distribution requires considering complexities such as travel distance, vehicle capacity, and time windows. Specifically, it compares the performance of ALNS, SA, and GA in minimizing total travel distance while adhering to strict delivery windows. The research is conducted across different cases, each distinguished by varying levels of demand, nodes, and time windows for each case. Based on four cases, ALNS is the most effective method among the three methods in optimizing bread distribution. It was averagely 33.02% more efficient than SA and 57.21% than GA for minimizing travel distance and offering a robust solution, improving delivery efficiency across different case scenarios.
References
[1] A. Masache and F. Mangwanya, “Application of vehicle routing in a bread delivery system at Bakers Inn 15th Avenue Factory in Bulawayo,” International Journal of Engineering & Scientific Research, Vol. 1, No. 2, pp. 1-17, Dec. 2013. https://www.ijmra.us/project%20doc/IJESR_DECEMBER2013/IJMRA-4339.pdf
[2] A. Estrada‐Moreno, C. Fikar, A. A. Juan, and P. Hirsch, “A biased‐randomized algorithm for redistribution of perishable food inventories in supermarket chains,” International Transactions in Operational Research, vol. 26, no. 6, pp. 2077–2095, Apr. 2019, doi: https://doi.org/10.1111/itor.12668.
[3] A. A. N. P. Redi et al.., “Simulated annealing algorithm for solving the capacitated vehicle routing problem: a case study of pharmaceutical distribution,” Jurnal Sistem dan Manajemen Industri, vol. 4, no. 1, pp. 41–49, Jul. 2020, doi: https://doi.org/10.30656/jsmi.v4i1.2215.
[4] K. Bujel, F. Lai, M. Szczecinski, W. So, and M. Fernandez, “Solving high volume capacitated vehicle routing problem with time windows using recursive-DBSCAN clustering algorithm,” arXiv preprint,1812.02300. Dec. 2018, doi: https://doi.org/10.48550/arXiv.1812.02300
[5] K. A. Putri, N. L. Rachmawati, M. Lusiani, and A. A. N. P. Redi, “Genetic algorithm with cluster-first route second to solve the capacitated vehicle routing problem with time windows: A case study”, Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri, vol. 23, no. 1, pp. 75–82, May 2021. doi: https://doi.org/10.9744/jti.23.1.75-82
[6] D. M. Utama, W. O. N. Safitri, and A. K. Garside, “A modified camel algorithm for optimizing green vehicle routing problem with time windows”, Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri, vol. 24, no. 1, pp. 23–36, May 2022. doi: https://doi.org/10.9744/jti.24.1.23-36.
[7] A. A. Londoño, W. G. González, O. D. Montoya, and J. W. Escobar, “A hybrid heuristic approach for the multi-objective multi depot vehicle routing problem,” International Journal of Industrial Engineering Computations, vol. 15, no. 1, pp. 337–354, Jan. 2024, doi: https://doi.org/10.5267/j.ijiec.2023.9.006.
[8] S. Wang, X. Zhu, P. Shang, X. Lin, L. Yang, and Lóránt Tavasszy, “Two-echelon multi-commodity multimodal vehicle routing problem considering user heterogeneity in city logistics,” Expert Systems with Applications, vol. 252, pp. 124141–124141, Oct. 2024, doi: https://doi.org/10.1016/j.eswa.2024.124141.
[9] S. Pingale, A. Kaur, and R. Agarwal, “Collaborative last mile delivery: A two-echelon vehicle routing model with collaboration points,” Expert Systems with Applications, vol. 252, pp. 124164–124164, Oct. 2024, doi: https://doi.org/10.1016/j.eswa.2024.124164.
[10] R. J. Kuo, E. Edbert, F. E. Zulvia, and S.-H. Lu, “Applying NSGA-II to vehicle routing problem with drones considering makespan and carbon emission,” Expert Systems with Applications, vol. 221, p. 119777, Jul. 2023, doi: https://doi.org/10.1016/j.eswa.2023.119777.
[11] C. Natalia, V. Triyanti, G. Setiawan, and M. Haryanto, “Completion of capacitated vehicle routing problem (CVRP) and capacitated vehicle routing problem with time windows (CVRPTW) using bee algorithm approach to optimize waste picking transportation problem,” Journal of Modern Manufacturing Systems and Technology, vol. 5, no. 2, pp. 69–77, Aug. 2021, doi: https://doi.org/10.15282/jmmst.v5i2.6855.
[12] M. L. Mutar, M. A. Burhanuddin, A. S. Hameed, N. Yusof, and H. J. Mutashar, “An efficient improvement of ant colony system algorithm for handling capacity vehicle routing problem,” International Journal of Industrial Engineering Computations, pp. 549–564, 2020, doi: https://doi.org/10.5267/j.ijiec.2020.4.006.
[13] C. Wang, D. Mu, F. Zhao, and J. W. Sutherland, “A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup–delivery and time windows,” Computers & Industrial Engineering, vol. 83, pp. 111–122, May 2015, doi: https://doi.org/10.1016/j.cie.2015.02.005.
[14] L. Wei, Z. Zhang, D. Zhang, and S. C. H. Leung, “A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints,” European Journal of Operational Research, vol. 265, no. 3, pp. 843–859, Mar. 2018, doi: https://doi.org/10.1016/j.ejor.2017.08.035.
[15] A. Andriansyah, R. Novatama, and P. D. Sentia, “algoritma simulated annealing untuk menentukan rute kendaraan heterogen (studi kasus),” Jurnal Teknologi Informasi dan Ilmu Komputer, Oct. 2020, doi: https://doi.org/10.25126/jtiik.2020752018.
[16] S. D. Juniarto, E. S. Martiana, P. Fariza, and Ira, “Optimasi distribusi barang berdasarkan rute dan daya tampung menggunakan metode simulated annealing,” EEPIS Final Project Politeknik Elektronika Negeri Surabaya, 2011. http://repo.pens.ac.id/id/eprint/1133
[17] R. L. Sinaga, “Algoritma simulated annealing untuk menyelesaikan multi depot vehicle routing problem dengan variabel travel time,” Doctoral dissertation, Institut Technology Sepuluh Nopember, 2021.
[18] E. Wirdianto, and B. S. Jonrinaldi, “Penerapan algoritma simulated annealing pada penjadwalan distribusi produk,” Jurnal Optimasi Sistem Industri, vol. 7, no. 1, pp. 7-20, 2007. http://repo.unand.ac.id/3453/1/2_Jurnal-TIUA-_Eri-Jon-Betris__Edisi_13_hal-7-20.pdf
[19] S. T. Windras Mara, R. Norcahyo, P. Jodiawan, L. Lusiantoro, and A. P. Rifai, “A survey of adaptive large neighborhood search algorithms and applications,” Computers & Operations Research, vol. 146, p. 105903, Oct. 2022, doi: https://doi.org/10.1016/j.cor.2022.105903.
[20] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992, doi: 10.2307/24939139.
[21] I. D. Safira, A. Pradjaningsih, and A. Riski, “Penerapan kombinasi genetic algorithm dan iterated local search pada multi-depot capacitated vehicle routing problem,” Jurnal Matematika, vol. 11, no. 1, p. 41, Aug. 2021, doi: 10.24843/jmat.2021.v11.i01.p135.
[22] B. Tuffin, and P. L'Écuyer, Monte Carlo and Quasi-Monte Carlo Methods, Springer International Publishing, Vol. 324, p. 539, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rifqi Fauzi, Adi Priansyah, Paskalis Krisna Puspadewa, Syifa Maulvi Zainun Awal, Huu Tho Nguyen , Achmad Pratama Rifai

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published in the Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri will be Open-Access articles distributed under the terms and conditions of the Creative Commons Attribution License (CC BY).
This work is licensed under a Creative Commons Attribution License (CC BY).