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Abstract: This research investigates the application of optimization methods to the Capacitated 

Vehicle Routing Problem with Time Windows in the context of bread distribution for the efficiency 

of different approaches for managing large-scale goods delivery. Managing this distribution 

requires considering complexities such as travel distance, vehicle capacity, and time windows. 

Specifically, it compares the performance of ALNS, SA, and GA in minimizing total travel distance 

while adhering to strict delivery windows. The research is conducted across different cases, each 

distinguished by varying levels of demand, nodes, and time windows for each case. Based on four 

cases, ALNS is the most effective method among the three methods in optimizing bread 

distribution. It was averagely 33.02% more efficient than SA and 57.21% than GA for minimizing 

travel distance and offering a robust solution, improving delivery efficiency across different 

scenarios. 

 

Keywords: Capacitated vehicle routing problem with time windows, bread distribution, simulated 

annealing, adaptive large neighborhood search, genetic algorithm. 

 

 

Introduction 
 

Demand for primary products represents basic societal needs that must be efficiently distributed to various 

destinations. As a perishable product, bread faces distribution challenges due to limited delivery times related 

to schedules and expiration dates. Bread deliveries cannot be made at any time; they must adhere to specific 

predetermined time windows [1]. 

 

Optimal route planning is essential to ensure perishable products like bread reach their destinations before 

expiration [2], [3]. Poor route planning can result in products arriving in unsellable condition, leading to 

financial losses and a damaged reputation for the distributor [1]. Additionally, untimely deliveries can cause 

product buildup at depots, increasing waste and reducing operational efficiency [3]. 

 

A real-world problem faced by a convenience store company with a distribution network across Bali Province 

involves distributing bread, a product with a limited shelf life. The company must also efficiently use resources 

and navigate facility constraints, such as the number of vehicles, vehicle capacities, the number of employees, 

and operational hours at each store. With 150 stores to service in a single day, it is crucial to meet the demand 

at each store using minimal distribution routes. This study compares several approximation methods, including 

Simulated Annealing, Adaptive Large Neighborhood Search, and Genetic Algorithm, to make timely and 

efficient decisions. 

 

In the context of distributing perishable products, such as bread, several key factors must be considered, 

including the distance between depots and destinations, travel time, vehicle capacity, and the time windows set 

by each destination. The bread distribution problem in this study belong to the Capacitated Vehicle Routing 

Problem with Time Windows (CVRPTW), in which the considerations of various vehicle capacity and time 

window that aligns with the operational hours of each destination as well as the expiration tolerance of the 

goods being delivered add complexity to distribution planning, requiring a systematic approach to achieve 
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optimal efficiency [4]. To address these challenges, incorporating additional constraints for vehicle capacity and 

strict time windows that are critical for maintaining product freshness are essential for the developed model. 

 

This research aims to develop an optimization solution tailored specifically to the bread distribution process 

under the CVRPTW framework. Unlike general distribution models, this study targets the unique challenges 

associated with perishable goods, where minimizing total travel distance and delivery time is critical to 

maintaining product quality and reducing costs. By comparing various approximation methods like Simulated 

Annealing (SA), Adaptive Large Neighborhood Search (ALNS), and Genetic Algorithm (GA), the study seeks to 

identify the most effective approach for meeting all store demands within the specified time windows in the 

complex CVRPTW problem. Furthermore, the robustness of these methods will be tested under various 

scenarios, such as varying demand, variations of nodes and time windows. The ultimate objective of this 

research is to offer actionable insights and practical guidelines for minimizing travel distance with time 

windows, enabling them to optimize delivery routes, uphold product quality, and boost customer satisfaction in 

the context of bread distribution.  

 

Literature Review 

 
One of the primary challenges in distribution is meeting the demand at multiple destinations. Bujel et al. [4] 

utilized the Recursive-DBSCAN Algorithm to determine the minimum travel time for 5000 destinations, 

considering time windows. This method clusters data at nodes, significantly reducing the program's 

computation time and effectively handling 5000 destinations, compared to traditional methods which manage 

only 2000 destinations [4]. The unique challenge of distributing semi-perishable goods, such as medications with 

varying expiration dates, requires minimizing travel time while considering vehicle capacity and demand at 

each destination [3]. 

 

Redi et al. [3] compared the Capacitated Vehicle Routing Problem (CVRP) solutions using Simulated Annealing 

(SA) and Nearest Neighbors (NN) methods, finding that SA yielded more optimal travel times. Mangwanya and 

Masache [1] addressed the CVRP by comparing the Saving Based Algorithm and NN, demonstrating that these 

methods could significantly reduce distribution costs compared to existing conditions. Meanwhile, Putri et al. 

[5] proposed Genetic Algorithm with Cluster-first Route second to solve the CVRP. Besides the limitation of 

vehicle capacity, the study also considered the issue of time windows in the VRP. Similarly, Utama et al. [6] also 

focused on VRP with time windows. In addition, the study considered the issue of green VRP by adding the 

minimization of fuel consumption as one of the objective functions to be solved by the proposed Camel Algorithm 

(CA). 

 

Estrada-Moreno et al. [2] minimized transportation and opportunity costs for perishable products with multiple 

depots (MDVRP) using the Randomized Biased Algorithm, considering deadlines and penalty costs. 

 

Londoño et al. [7] developed an MDVRP solution to minimize route distance and balance routing using the Chu 

Beasley Genetic Algorithm with Variable Neighborhood Search (CBGA-VNS), a hybrid method applied to 

extensive and complex case studies.  

 

In another case, Wang et al. [8] employed a two-echelon approach considering multi-modal, multi-commodity 

optimization to minimize generalized costs in VRP, known as a two-echelon VRP Collaboration Point (2E-VRP-

CP) scenario to minimize total distribution costs [8]. The NSGA-II algorithm was applied to optimize makespan 

and carbon emissions. Pingale et al. [9] highlighted the importance of integrating multiple aspects in delivery 

to provide simultaneous decision-making solutions. They compared exact methods with metaheuristics (ALNS) 

for last-mile delivery in the Multi-Modal Multi-Commodity Vehicle Routing Problem (2E-MCM-VRP). Pingale 

et al. [9] indicated that ALNS is able to reach excellence optimal routing to minimize generalized cost. Kuo et al. 

[10] proposed an algorithm that produces high-quality solutions, measured through hypervolume and spacing, 

and tested the significant benefits of using drones to reduce makespan and carbon emissions [10]. 

 

In terms of minimizing travel distance and maximizing vehicle capacity utilization for CVRP and CVRPTW, 

Natalia et al. [11] implemented the Bee Algorithm for optimal waste transportation routes, achieving more 

efficient and effective routes than the current government system [11]. Mutar et al. [12] examined solving the 

CVRP using the Ant Colony System (ACS) algorithm, which leverages sub-path experiences from previous 

iterations to find the best solution and achieve the shortest distance within a reasonable time. Table 1 

summarizes previous related studies on vehicle routing problems. 
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Table 1. Related studies 

Author Problem Objective function Methods Note 

[1] CVRP Minimize Distribution cost Saving Based 

Algorithm, NN 

comparing manual and 

software's result 

[2] MDVRP Minimize total transport cost 

and opportunity cost 

Randomized-Biased 

Algorithm 

redistribution of 

perishable products 

[3] CVRP Minimize travel time SA, NN pharmaceutical 

distribution 

[4] CVRPTW Minimize total travelled 

distance 

Recursive-DBSCAN 

Algorithm 

big nodes (5000) 

[5] CVRPTW Minimize total distribution costs GA cluster-first route-second 

[6] VRPTW Minimize cost of fuel 

consumption and the cost of late 

delivery 

CA Green VRP 

[7] MDVRP Minimize routing distance and 

routing balancing 

CBGA-VNS hybrid method 

[8] 2E-VRP-CP Minimize total distribution cost Exact, Greedy 

Algorithm 

collaborative last mile 

delivery 

[9] MCM-2E-

VRP 

Minimize generalized cost ALNS multi model and multi 

commodity 

simultaneously  

[10] VRPTW Minimize makespan and total 

carbon emissions 

NSGA-II integrating trucks and 

drones 

[11] CVRP and 

CVRPTW 

Optimal routes to minimize 

distance 

Bee algorithm waste transportation 

routes 

[12] CVRP Minimize the distance or total 

cost of the route 

ACS symmetric and 

asymmetric TSP 

This 

research 

CVRPTW Minimize total travel distance SA, ALNS, GA robustness analysis 

 

Pingale et al. [9] conducted the excellent implementation of ALNS to minimize generalized cost. As a result, 

comparing with other metaheuristic approach is needed to test it. This research fills a gap in the existing 

literature by comparing the methods of SA, ALNS, and GA. The three metaheuristics are selected due to 

simplicity and adept as escaping local optima, besides that comparing among population based dan trajectory 

based importantly needed to prove which method is near with optimal solution. Further, this study also tests 

the robustness of each method's results, ensuring reliable managerial recommendations even under varying 

demand, vehicle numbers, capacities, and other company constraints.  

 

Methods 
 

This study employs a comparative analysis of several methods to identify the best results for running the 

algorithm. The data processing is conducted using MATLAB 2024a, supplemented by Excel and Python for data 

extraction and processing.  

 

This research begins with a literature review and data collection to identify real-world problems and gain a 

comprehensive understanding of the bread distribution problem. The research begins with a literature review 

and field study to identify real-world problems such as bread distribution problems. The literature review 

focuses on topics related to the Capacitated Vehicle Routing Problem (CVRP) and commonly used methods for 

solving it, such as Simulated Annealing, Adaptive Large Neighborhood Search, and Genetic Algorithm. The 

field study involves adjusting to actual conditions and collecting the necessary data, including average demand 

data, distance data, and store location data. 

 

A mathematical model is developed to minimize travel distance, considering constraints like vehicle limitations, 

time windows, and capacities. The model is solved and evaluated with three different metaheuristic algorithms: 

Simulated Annealing (SA), Adaptive Large Neighborhood Search (ALNS), and Genetic Algorithm (GA). 

Parameter tuning is determined using Design of Experiments (DOE), replicating parameter combinations five 

times. 

 

Data processing is subsequently carried out with MATLAB 2023a for each method. Following the application 

of these algorithms, a comparative analysis is conducted to evaluate their performance and identify the most 
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suitable method for the problem at hand. A robust analysis is then performed to assess how well the obtained 

solutions remain effective under varying conditions, such as changes in demand or vehicle capacity. 

 

The final steps include conducting robust analysis using statistical comparisons and analyzing the results. 

Drawing conclusions and making recommendations constitute the last steps of this research. This study 

employs a comparative analysis of several methods to identify the best results for running the algorithm. The 

data processing is conducted using MATLAB 2023a, supplemented by Excel and Open Street Map (OSMNX) 

Python for data extraction and processing.  

 

Mathematical Model 

 

This section provides a detailed description of the Capacitated Vehicle Routing Problem with Time Windows 

(CVRPTW) for perishable products. CVRPTW involves selecting routes for a limited number of vehicles to 

distribute products within specific time frames. The constraints of this problem include a homogeneous fleet of 

vehicles, a central depot or distribution center (DC), a set of geographically distributed stores considered as 

customers, and a network connecting the DC to the stores. 

 

Customers are identified as 𝑖 =  {1, 2, 3, . . . , 𝑁} . For notation convenience, the distribution center (DC) is 

denoted as a special customer corresponding to node 0. DC serves as both the distribution hub and the collection 

center. Each store/customer has a fixed delivery demand denoted as 𝑞𝑖. This notation indicates the amount of 

goods that must be delivered from DC to the store/customer. All products are assumed to be compatible and can 

be loaded into the same vehicle. The DC does not have any delivery requirements. The unit of demand is 

measured in crates or boxes. 

 

The vehicles used are box trucks with a capacity of 200 crates or boxes, all having the same capacity and 

assumed to have the same delivery cost. They are initially stationed at the DC and are dispatched according to 

the delivery schedule within the time windows. In this case, there are two vehicles, and each vehicle starts and 

ends its route at DC. GIS from Open Street Map data was used to create a distance matrix, providing accurate 

representations of the actual distances between customers.   

 
Table 2. Notations of mathematical models 

Symbol Description 

M Number of vehicles 

N Number of nodes 
𝑖, 𝑗 Index of nodes 𝑖, 𝑗 ∈ {1,2,3, . . . , 𝑁} 
𝑘 Index of vehicles used 𝑘 ∈ {1,2,3, . . . , 𝑀} 

𝑑𝑖𝑗 Distance between node 𝑖 dan 𝑗 
𝑞𝑗 Size of delivery for each node/store 

𝑄𝑘 Vehicle capacity to transport goods 
𝑒𝑖 Earliest time delivery can be made 
𝑙𝑖 Latest time delivery must be completed 
𝑡𝑖 Travel time at node/store i 
𝑠𝑖 Service time at node/store i 
𝑑𝑘 Departure time of vehicle k to the depot/DC 
𝑎𝑖 Vehicle arrival time at node/store 𝑖 
𝑝𝑘 Arrival time of vehicle 𝑘 to the depot/DC 
𝑇𝑘 Total travel time for vehicle k 

 𝑤𝑖𝑗
𝑘  Waiting time or delay on the route from i to j for vehicle k 

 𝑥𝑖𝑗
𝑘  A binary variable indicating whether vehicle 𝑘 travels directly from node 𝑖 to node 𝑗, 1 if vehicle 𝑘 travels 

from node 𝑖 to node 𝑗, 0 otherwise 

 

Both the DC and the stores/customers have specific time windows. The DC has a time window during which 

vehicles cannot depart before a specified time and must return when the stock is depleted. Each store/customer 

has a specific service time window defining the earliest and latest times a vehicle can start servicing the store. 

There are four cases in this research. Case 1 consists of 20 stores, case 2 consists of 50 stores, case 3 consists of 

100 stores dan cases 4 consists of 150 stores. Each case has several stores operating 24 hours a day and several 

stores operating for 15 hours a day from 07:00 to 22:00. The distribution workday starts at 07:00 at the DC, 

assuming the vehicles are pre-loaded. Each customer (store) has a service time representing the duration the 

vehicle spends unloading goods at that store, assumed to be 10 minutes per unloading. Routes start at the DC, 

visit multiple stores/customers in a single trip, and return to DC. The following assumptions are made for this 
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study: (1) Distribution is conducted twice a week. (2) The vehicles used for distribution are box trucks. (3) All 

vehicles have the same capacity. (4) Six vehicles are used. (5) Constant demand. (6) The unloading time is 

assumed to be the same for every demand. (7) Each node/store is visited only once. 
 

The following is the mathematical model developed for the Capacitated Vehicle Routing Problem with Time 

Windows (CVRPTW) for perishable products. This model scratches dan refers to Bujel et al. [4]. The notation 

for indices, sets, parameters, and decision variables used in the mathematical model is presented in Table 2. 
 

Objective function: 

 

Min 𝐹 = ∑ ∑ ∑ 𝑑𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

𝑁

𝑖=0

𝑁

𝑖=0

𝑀

𝑘=1

 
(1) 

 

Subject to: 

 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑁

𝑖=0

𝑀

𝑘=1

= 1 
∀ 𝑗 ∈ {1,2,3, . . . , 𝑁} (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑁

𝑗=1

𝑀

𝑘=1

= 1 
∀ 𝑖 ∈ {0,1,2,3, . . . , 𝑁} (3) 

∑ 𝑥𝑖𝑗
𝑘

𝑁

𝑗=0

= ∑ 𝑥𝑗𝑖
𝑘

𝑁

𝑗=0

 
∀ 𝑖 ∈ {1,2,3, . . . , 𝑁};  𝑘 ∈ {1,2,3, . . . , 𝑀} (4) 

∑ 𝑥
0𝑗
𝑘

𝑁

𝑗=0

= 1 
∀ 𝑘 ∈ {1,2,3, . . . , 𝑀} (5) 

∑ 𝑥
𝑖0
𝑘

𝑁

𝑖=1

= 1 
∀ 𝑘 ∈ {1,2,3, . . . , 𝑀} (6) 

∑ 𝑞𝑗 (∑  𝑥𝑖𝑗
𝑘

𝑁

𝑖 =0

)

𝑁

𝑗 =0

≤ 𝑄𝑘 

∀ 𝑘 ∈ {1,2,3, . . . , 𝑀} (7) 

𝑢𝑖 − 𝑢𝑗 + (𝑛 − 1)𝑥𝑖𝑗
𝑘 ≤ 𝑛 − 2 ∀ 𝑖, 𝑗 ∈ {1,2,3, . . . , 𝑁}; 𝑖 ≠ 𝑗;  𝑘 ∈ {1,2,3, . . . , 𝑀} (8) 

𝑎𝑗 = 𝑎𝑖 + 𝑡𝑖𝑗 + 𝑠𝑖𝑥𝑖𝑗
𝑘  ∀ 𝑖 ∈ {1,2,3, . . . , 𝑁};  𝑘 ∈ {1,2,3, . . . , 𝑀} (9) 

𝑒𝑖 ≤ 𝑎𝑖 ≤ 𝑙𝑖 ∀ 𝑖 ∈ {1,2,3, . . . , 𝑁} (10) 

𝑝𝑘 = 𝑑𝑘 + ∑ (𝑡𝑖𝑗 + 𝑠𝑖)
𝑛
𝑖=1

𝑥𝑖𝑗
𝑘   ∀ 𝑖 ∈ {1,2,3, . . . , 𝑁};  𝑘 ∈ {1,2,3, . . . , 𝑀} (11) 

𝑒0 ≤ 𝑝𝑘 ≤ 𝑙0 ∀ 𝑘 ∈ {1,2,3, . . . , 𝑀} (12) 

𝑇𝑘 = ∑ (𝑡𝑖𝑗 + 𝑤𝑖𝑗
𝑘 )𝑛

𝑖,𝑗=1
𝑥𝑖𝑗

𝑘 + ∑ 𝑠𝑖
𝑛
𝑖=1

  ∀ 𝑖 ∈ {1,2,3, . . . , 𝑁};  𝑘 ∈ {1,2,3, . . . , 𝑀} (13) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ {1,2,3, . . . , 𝑁}; 𝑘 ∈ {1,2,3, . . . , 𝑀} (14) 

𝑎𝑖 , 𝑝𝑘 ≥ 0 ∀ 𝑖, 𝑗 ∈ {1,2,3, . . . , 𝑁}; 𝑘 ∈ {1,2,3, . . . , 𝑀} (15) 

 

Equation (1) describes the objective function which is to minimize the total travelled distance of all vehicles. 

Equations (2) and (3) ensure only one vehicle visits a node. Equation (4) ensures route continuity. Equations (5) 

and (6) ensure that the vehicle departs from and returns to depot. Equation (7) ensures that the total size of the 

goods transported by the vehicle does not exceed its vehicle capacity. Equation (8) is Miller-Tucker-Zemlin 

(MTZ) constraint for sub-tour elimination. 𝑢𝑖 is additional variable which represents the position of node 𝑖 in 

the route. Equation (9) calculate arrival time at node/store 𝑖. Equation (11) calculate arrival time of vehicle k to 

the depot/DC. Equations (10) and (12) ensure that time windows are met. Equation 13 calculates the total travel 

time for vehicle k. Lastly, equations (14) and (15) limit the decision variables value. 

 

Simulated Annealing 

 

Simulated Annealing (SA) is a metaheuristic algorithm inspired by the annealing process in metallurgy. In 

metallurgy, annealing involves heating a material to a high temperature and then gradually cooling it to reduce 
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defects and improve the crystal structure of the material [13]. This algorithm was first introduced by 

Kirkpatrick, Gelatt, and Vecchi (1983) and Černý (1985) and has proven effective compared to other metaheuristic 

methods for solving the Vehicle Routing Problem (VRP) [14]. 

 

The basic principle of SA is to optimize an objective function by exploring the solution space. It is commonly 

used for solving combinatorial optimization problems [14]. The algorithm searches for the best solution within 

the search space, retaining the best solutions found. It also accepts new solutions based on their relative cost, 

even if they are worse, with a probability determined by a temperature that decreases over time [13]. 

 

Simulated Annealing (SA) is widely used for solving combinatorial optimization problems like the Vehicle 

Routing Problem (VRP). SA has several advantages over other methods in solving VRP, particularly its ability 

to avoid local optima traps and find better global solutions [15], [16]. Additionally, the parameters of SA can be 

tuned to optimize specific characteristics of VRP problems, such as vehicle capacity and time windows. Sinaga 

[17] has shown that SA can solve multi-depot VRP by generating vehicle routes that minimize travel time. Thus, 

its application is not limited to standard VRP but extends to VRP with Time Windows, Multi Depot VRP, 

Heterogeneous Fleet VRP, and Capacitated Vehicle Routing Problem with Time Windows [15], [17], [18]. This 

research conducted only use routing and divide the route in balance for 6 vehicles. 

 

Simulated Annealing uses exploration and exploitation operators to search for solutions. Three types of SA 

operators used in this research are swap, insert, and reverse sub-route operators. The operator used in each 

iteration is determined probabilistically [3]. The probabilities for accepting each operator are semi-subjective. If 

random value generated 0 < 0.333, the swap operator is used, which selects two nodes at random and swaps 

their positions. If 0.333 < 0.667, the insert operator is used, which selects a random node and inserts it at a 

different position to create a new solution. If 0.667 <1.000, the reverse operator is used, which selects two 

random nodes and reverses the order of nodes between them (flip process) to create a new solution. 

 

The iterative process utilizing temperature reduction based on 𝛼, determined through Design of Experiments 

(DOE), can be scientifically formulated in the context of optimization of Simulated Annealing (SA) method. The 

search for an optimal solution involves a gradual decrease in a control parameter commonly referred to as 

temperature T. This temperature metaphorically controls the level of exploration within the solution space. This 

temperature decrease is regulated by the 𝛼, often termed the cooling rate. The 𝛼 typically ranges between 0 and 

1, and the new temperature in each iteration is calculated using the formula below: 

 

𝑇𝑛𝑒𝑤 =  𝛼 ∗  𝑇𝑜𝑙𝑑   (16) 

 

In the context of CVRPTW, Simulated Annealing can be applied to find near-optimal solutions for vehicle 

routing that meet all vehicle capacity and time window constraints. In each iteration, the algorithm generates 

a new solution by randomly modifying the vehicle routes and then evaluates whether the new solution improves 

or worsens the current solution. By utilizing a cooling rate strategy, the algorithm effectively explores the 

solution space and eventually converges to better solutions [3]. 

 

In implementing Simulated Annealing for CVRPTW, solutions are represented as a set of vehicle routes, each 

containing several customers and meeting capacity and time window constraints [4]. The general pseudocode 

for SA and its application in this research is presented in Algorithm 1. 

 
Algorithm 1 Pseudocode of SA 

1 Input: 𝑇𝑜, 𝑇𝑓𝑖𝑛𝑎𝑙 , 𝛼 

2 Generate an initial solution 𝑋 

3 Calculate the fitness values of the solution 𝑓(𝑋) 

4 Initialize current temperature 𝑇 =  𝑇𝑜 

5 While 𝑇 >  𝑇 𝑓𝑖𝑛𝑎𝑙 
6 Perform solution modification 𝑋𝑛𝑒𝑤 ← 𝑋 

7 Calculate the fitness 𝑓(𝑋𝑛𝑒𝑤) 

8 Compute 𝛥 =  𝑓 𝑋𝑛𝑒𝑤 −  𝑓(𝑋) 

10 Metropolis criterion for acceptance 

11 Adjust current temperature 𝑇 = 𝛼𝑇 

12 End while 

13 Output: 𝑋 and 𝑓 (𝑋) 
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Adaptive Large Neighborhood Search 

 

The Adaptive Large Neighborhood Search (ALNS) method has a unique solution search process not found in 

other algorithms, specifically through its destruction and repair processes. Like other algorithms, each of these 

processes has specific operators. In the destroy process, operators include random removal (randomly selecting 

nodes) and worst removal (selecting the furthest nodes). In random removal, a certain number of components 

(i.e., often referred to as 'nodes' in the context of routing or scheduling problems) are randomly selected from the 

solution for removal. This method relies on stochastic processes, meaning it introduces a degree of randomness 

into the search, potentially helping to avoid local optima. Then the worst removal destruction involves 

identifying and removing the components of the solution that contribute least to its quality or that result in the 

most significant negative impact. For instance, in a vehicle routing problem, this might mean removing the 

stops that are furthest away or causing the route to be inefficient. The repair process features operators like 

random insert (repairing the destroyed solution with random alternative solutions) and greedy repair (using a 

greedy algorithm to replace destroyed solution nodes). Random Insert is a method where components removed 

from the solution during the destruction phase are replaced randomly. This involves selecting elements or nodes 

randomly from a candidate set and inserting them back into the solution at feasible random positions. Then, 

Greedy Repair utilizes a greedy algorithm to meticulously select the most beneficial or optimal elements for 

reintroduction from a pool of candidates. This selection is driven by specific metrics such travel distance, with a 

focus on comparing the shortest routes. Furthermore, after the destruction and repair processes, the routing 

will be adjusted to ensure that no locations are repeated within a single route for each vehicle. 

 

Additionally, the destruction and repair processes in ALNS are weighted, and these weights are updated in 

each iteration. The destroy process removes several nodes randomly based on the degree of destruction (DoD) 

parameter. The number of nodes removed is calculated using the formula in Equation (13) [19]. 

 

Number of removed nodes = 𝑁 (𝐷𝑜𝐷2 − ((𝐷𝑜𝐷2 − 𝐷𝑜𝐷1) (
𝑡

𝑇
))) 

(17) 

 

Where 𝐷𝑜𝐷2 is the upper bound and 𝐷𝑜𝐷1 is the lower bound of destruction parameter. 𝑡 is the index of current 

iteration and 𝑇 is total iteration. Afterward, the probability of selecting an operator 𝑃(𝑐) is calculated using the 

formula:  

𝑃(𝑐) =  
𝑤𝑐

−/+

∑ 𝑤𝑑
−/+

𝑑∈𝐷𝑀

      ∀ 𝑐 ∈ 𝐷𝑀 
 

(18) 

 

Where 𝑤𝑐
−/+

 is the weight of the destruction or repair operator.  Once an operator is selected, its weight is 

updated in the next iteration using the following equations:  

 

𝑤
𝑑,𝑡+1
− =  𝛼(𝑤𝑑,𝑡

− ) + (1 − 𝛼)𝛽 (19) 

𝑤
𝑑,𝑡+1
+ =  𝛼(𝑤𝑑,𝑡

+ ) + (1 − 𝛼)𝛽 (20) 

𝛽 = {
𝑍1 𝑖𝑓 𝑓(𝑋𝑛𝑒𝑤) ≥ 𝑓(𝑋)

𝑍2 𝑖𝑓 𝑓(𝑋𝑛𝑒𝑤) > 𝑓(𝑋)
 

(21) 

 
Algorithm 2 Pseudocode of ALNS 

1 Input: 𝑇, 𝐷 

2 Generate an initial solution 𝑋 

3 Calculate the fitness values of the solution 𝑓(𝑋) 

4 Set Initial Weight 𝑤− and 𝑤+   

5 While 𝑡 <  𝑇𝑓𝑖𝑛𝑎𝑙 
6 Select Destroy and Repair method based on its weight 

7 Perform destroy operator 𝐷𝑋 ←  𝑑(𝑋) 

8 Perform repair operation 𝑋𝑛𝑒𝑤 ←  𝑟(𝐷𝑋) 

10 Perform adjustment to the new solution 𝑋𝑛𝑒𝑤 

11 Calculate the fitness values of the solution 𝑓(𝑋𝑛𝑒𝑤) 

If 𝑓(𝑋𝑛𝑒𝑤)< 𝑓(𝑋)then 𝑓(𝑋) = 𝑓(𝑋𝑛𝑒𝑤) , 𝑋 = 𝑋𝑛𝑒𝑤 

12 Update the weights based on previous performance 

13 End while 

14 Output: 𝑋 and 𝑓 (𝑋) 
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Here, 𝑤𝑑,𝑡+1
+ /𝑤𝑑,𝑡+1

−  is the weight of repair/destroy operator in the next iteration, while 𝑤𝑑,𝑡
− /𝑤𝑑,𝑡

+  is the weight 

in previous operators. 𝛽 is a decay parameter, controlling the sensitivity or weight to change. The higher the 
value, the more reluctant the weight is to change. Meanwhile, 𝛼 is the score for changing the weights based on 
the operator's performance in the previous iteration [19]. Algorithm 2 presents the ALNS pseudocode in general 
and what is applied in this study. 
 
Genetic Algorithm 
 
Genetic algorithms (GA) are population-based algorithms, distinct from Simulated Annealing (SA) and 
Adaptive Large Neighborhood Search (ALNS). Like biological inheritance processes, GA involves selecting the 
best parents for crossover of their DNA and mutation of the parent DNA to produce offspring that have potential 
as alternative solutions [20]. The parent selection, crossover, and mutation processes depend on the initiated 
parameters, namely crossover rate and mutation rate. 
 
Genetic algorithms (GA) have been successfully applied to various supply chain problems, such as the Vehicle 
Routing Problem (VRP). The effectiveness of GA in solving capacitated VRP highlights improvements in 
managerial decision-making processes and supply chain efficiency. Other studies indicate that while the 
combination of GA and Iterated Local Search (ILS) is effective for small-scale data, it is less efficient for large-
scale data due to its susceptibility to local optima and long computation times [21]. Then, if the solution violates 
the constraints, especially in the time window, there is a big number penalty that causes the solution to be 
rejected and the selection, crossover, and mutation processes to be repeated and the algorithm will move 
towards selecting and evolving feasible solutions that respect the time windows.  Algorithm 3 describes the 
pseudocode of GA. 
 
Algorithm 3 Pseudocode of GA 

1 Input: 𝑃, 𝑔, 𝑐𝑜, 𝑚𝑢 
2 Generate an initial Population 
3 While 𝑖 < 𝑔 
4 Select Parents from population 
5 Produce offsprings from selected parents using crossover 
6 Mutate the offsprings 
7 Extend the population adding offsprings to it 
8 Reduce the extended population 
10 End 
11 Output: 𝑋 and 𝑓 (𝑋) 

 
Comparison Testing 
 
At this stage, the optimal parameters for each method will be tested 10 times. Statistical analysis will be 
conducted to understand the characteristics of the results from each trial. This will involve analyzing the 
smallest and largest data points, the average data, and the standard deviation of the trial data [22]. 
 

Results and Discussions  
 
The SA, ALNS, and GA methods are influenced by various parameters that can significantly impact solution 
quality. To optimize these parameters for the specific problem, a Design of Experiment (DOE) approach was 
employed. By systematically varying parameters and analyzing the resulting solutions, DOE identified optimal 
parameter settings for each method. This study utilized a fractional factorial design with three levels (low, 
medium, and high) for each parameter, enabling efficient exploration of the parameter space while minimizing 
the number of experiments required 
 
Parameter Tuning 
 
Parameter tuning or the best parameter selection is conducted using DOE for each method. Each parameter 
combination is replicated five times. The results of each combination are then compared to obtaining the tuning 
parameters that yield the best solution for each method. 
 
SA Parameters  
 

For the SA method, the parameters that need tuning through DOE are the initial temperature (T0) and alpha 
(α). The T0 parameter determines the starting point of the iteration process, while the α parameter controls the 
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rate of temperature decrease. Higher values of T0 and α result in more iterations. The final temperature 
parameter (Tfinal) for the SA method is already set at Tfinal = 0.001 that can prevent premature convergence. 
And other parameters set with combination of high value (T0= 2000 and α=0.99) dan small value (T=1000 and 
α=0.95) to create search space on this research. 

 

There are four parameter combinations subjected to DOE in the SA method, as shown in Table 3. The DOE 

results indicate that T0 = 2000 and α = 0.99 provide the best results. These parameters will be used as tuning 

parameters for comparison with the ALNS and GA methods. 

 

The results in Table 3 demonstrates that α = 0.99 yields better outcomes compared to α = 0.95. A higher α value 

results in a slower temperature decrease, thus allowing more iterations. This indicates that for this problem, 

the SA method requires more iterations to find the best or near-optimal solution. More iterations allow the SA 

method to perform more extensive exploration and exploitation. Although more iterations increase the running 

time, they provide significantly better or closer-to-optimal solutions. 

 
Table 3. DOE results for SA parameters 

Parameters Total travelled distance (Km) Total travel time (minutes) 
Computation time 

(seconds) 

T0 = 1000 

α = 0.95 

 

616.74 2116.74 12.98 

640.08 2140.08 11.50 

708.89 2208.89 11.69 

736.53 2236.53 11.47 

660.11 2160.11 11.47 

Average 672.47 2172.47 11.82 

T0 = 1000 

α = 0.99 

 

508.71 2008.71 60.49 

540.10 2040.10 59.18 

516.56 2016.56 55.41 

516.56 2016.56 60.39 

516.56 2016.56 57.63 

Average 519.70 2019.70 58.62 

T0 = 2000 

α = 0.95 

 

683.70 2183.70 13.01 

683.70 2183.70 17.48 

660.67 2160.67 18.78 

660.67 2160.67 19.34 

664.46 2164.46 15.02 

Average 670.64 2170.64 16.73 

T0 = 2000  

α = 0.99 

 

531.98 2031.98 75.99 

499.71 1999.71 70.22 

489.55 1989.55 75.84 

464.60 1964.60 93.44 

537.77 2037.77 96.05 

Average 504.72 2004.72 82.31 

 

ALNS Parameters 

 

For the ALNS method, the tuning parameters that require DOE are the total iterations T and the Degree of 

Destruction (DoD) parameter. These parameters are set based on trial error in small cases then concluded the 

categories of each parameter. The T parameter controls the number of iterations, while the DoD parameter sets 

the percentage of nodes that need to be destroyed and repaired. The larger the value of T, the more iterations 

the process will undergo. The DoD parameter has both lower and upper limit values that determine the number 

of nodes to be destroyed and repaired. A greater difference between the lower and upper limit values results in 

a higher percentage of nodes being destroyed and repaired. In this study, the DOE stage for the ALNS method 

only determines the upper limit value, while the lower limit value is set at 0.1. 

 

As shown in Table 4, the DOE for the ALNS method tests four parameter combinations. The DOE results 

indicate that T = 1000 and the upper limit value DoD = 0.5 provide the best results. These parameters will be 

used for tuning compared with the SA and GA methods. 

 

The DOE results in Table 4 reveal that a higher number of iterations and a wider DoD range offer a better 

solution. More iterations allow for more extensive exploration and exploitation processes. A wider range of DoD 

values provides a broader exploration space at the beginning of the iteration because a higher percentage of 
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nodes are destroyed and repaired. While an increased number of iterations extends the running time, a larger 

DoD range results in faster times with the same number of iterations compared to a smaller DoD range. 

 
Table 4. DOE results for ALNS parameters 

Parameters Total travelled distance (Km) Total travel time (minutes) 
Computation time 

(seconds) 

T = 500 

DoD = [0.1 0.4] 

444.05 1944.05 7.12 

432.59 1932.59 4.93 

439.63 1939.63 5.12 

424.53 1924.53 4.39 

454.80 1954.80 4.33 

Average 439.12 1939.12 5.18 

T = 500 

DoD = [0.1 0.5] 

 

440.27 1940.27 4.39 

449.18 1949.18 3.67 

445.97 1945.97 3.61 

431.93 1931.93 3.64 

436.14 1936.14 3.64 

Average 440.70 1940.70 3.79 

T = 1000  

DoD = [0.1 0.4] 

 

435.88 1935.88 8.39 

420.18 1920.18 10.37 

424.05 1924.05 8.31 

426.51 1926.51 8.92 

438.63 1938.63 8.72 

Average 429.05 1929.05 8.94 

T = 1000  

DoD = [0.1 0.5] 

 

418.48 1918.48 9.16 

417.87 1917.87 8.43 

422.44 1922.44 8.43 

433.29 1933.29 8.38 

424.87 1924.87 8.23 

Average 423.39 1923.39 8.53 

 

GA Parameters 

 

For the Genetic Algorithm (GA) method, the tuning parameters requiring DOE are the population size (P), the 

number of generations or iterations (g), the crossover rate (co), and the mutation rate (mu). Parameter P 

determines the population size or the number of solutions to be processed, and g sets the number of generations 

or iterations for the GA process. The parameters co and mu are related to the exploration and exploitation 

processes; a higher co value increases the likelihood of crossover, while a higher mu value increases the 

likelihood of mutation. A larger co value expands the search space or exploration process, whereas a larger mu 

value enhances the exploitation of a single solution. 

 

There are 16 parameter combinations tested through DOE for the GA method, as shown in Table 5. The DOE 

results indicate that the combination of P = 1000, g = 500, co = 0.8, and mu = 0.2 yields the best results compared 

to other parameter combinations. These parameters will be used for tuning and comparison with the SA and 

ALNS methods. 

 

The DOE results in Table 5 show that population size plays a crucial role in the GA method. The larger the 

population size, the more solution combinations can occur for exploration. When P = 100 or P = 1000, changes 

in the g, co, and mu parameters do not significantly affect the results. Altering the P value increases the 

likelihood of finding the best solution in each iteration, so a larger P value produces better solutions. 

 

The sensitivity of co and mu values is significant in producing optimal solutions. Changes in co and mu values, 

when P and g are constant, yield different solutions. An increase in co must be balanced with an increase in mu. 

A higher co value combined with a higher mu value provides better solutions than when co or mu values are 

opposed. As shown in Table 4, when co = 0.7, the solution diverges from the optimal, indicating that the number 

of iterations and a more extensive DoD range provide better solutions. More iterations allow for more extensive 

exploration and exploitation processes. A larger DoD range offers a broader exploration space at the beginning 

of the iteration due to the higher percentage of nodes being destroyed and repaired. While increasing the number 

of iterations lengthens the running time, a larger DoD range results in faster times with the same number of 

iterations compared to a smaller DoD range. 
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Table 5. DOE results for GA parameters 

Parameters Total travelled distance (Km) Total travel time (minutes) 
Computation time 

(seconds) 

P = 100 

g = 500 

co = 0.7 

mu = 0.1 

1210.63 6060.63 2.95 

1193.42 5988.42 2.56 

1070.39 5980.39 2.30 

1113.48 5753.48 2.48 

1089.35 5784.35 2.35 

Average 1135.45 5913.45 2.53 

P = 100 

g = 500 

co = 0.7 

mu = 0.2 

1126.59 6066.59 2.74 

1113.64 6003.64 2.53 

1102.75 5762.75 2.41 

1101.68 5921.68 2.42 

1022.78 5837.78 2.40 

Average 1093.49 5918.49 2.50 

P = 100 

g = 500 

co = 0.8 

mu = 0.1 

1127.76 5842.76 2.94 

1034.12 5484.12 2.55 

1158.54 5973.54 2.46 

1124.08 6009.08 2.43 

1135.08 5825.08 2.46 

Average 1115.91 5826.91 2.57 

P = 100 

g = 500 

co = 0.8 

mu = 0.2 

1044.69 5824.69 2.64 

996.31 5771.31 2.42 

1075.96 5860.96 2.37 

1106.95 5796.95 2.36 

1044.68 5984.68 2.53 

Average 1053.72 5847.73 2.46 

P = 100 

g = 1000 

co = 0.7 

mu = 0.1 

995.57 5540.57 4.79 

1028.66 5653.66 4.63 

1046.29 5831.29 4.63 

1111.10 5776.10 4.33 

959.29 5589.29 4.36 

Average 1028.18 5678.18 4.55 

P = 100 

g = 1000 

co = 0.7 

mu = 0.2 

1014.74 5769.74 5.47 

1049.73 5924.73 5.12 

1036.28 5871.28 4.56 

1074.94 5999.94 4.68 

973.38 6123.38 4.54 

Average 1029.81 5937.81 4.87 

P = 100 

g = 1000 

co = 0.8 

mu = 0.1 

1042.84 5792.84 7.79 

1035.12 5940.12 8.51 

1070.30 5705.30 7.61 

1098.39 5743.39 8.23 

1036.56 5726.56 7.02 

Average 1056.64 5781.64 7.83 

P = 100 

g = 1000 

co = 0.8 

mu = 0.2 

1043.20 6078.20 8.53 

1001.09 5696.09 8.97 

1051.55 5766.55 7.74 

1078.32 5723.32 6.86 

934.52 5789.52 7.43 

Average 1021.73 5810.73 7.91 

P = 1000 

g = 500 

co = 0.7 

mu = 0.1 

889.28 5774.28 22.06 

979.62 5619.62 21.80 

853.40 5488.40 20.47 

1005.70 5780.70 18.70 

870.54 5705.54 19.18 

Average 919.71 5673.71 20.44 

P = 1000 

g = 500 

co = 0.7 

mu = 0.2 

1024.00 5849.00 22.57 

865.28 5830.28 23.12 

908.69 5618.69 19.53 

975.59 5690.59 20.79 

916.67 5811.67 19.50 

Average 938.04 5760.04 21.10 

P = 1000 

g = 500 

co = 0.8 

mu = 0.1 

896.23 5686.23 23.38 

929.13 5949.13 32.45 

932.60 5842.60 31.59 

1011.24 5701.24 29.96 

913.94 5788.94 27.07 

Average 936.63 5793.63 28.89 
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Parameters Total travelled distance (Km) Total travel time (minutes) 
Computation time 

(seconds) 

P = 1000 
g = 500 

co = 0.8 
mu = 0.2 

859.56 5819.56 27.39 
883.21 5788.21 27.99 
938.21 5818.21 27.46 

971.49 5771.49 27.30 
851.01 5981.01 27.33 

Average 900.70 5835.70 27.49 

P = 1000 

g = 1000 
co = 0.7 

mu = 0.1 

953.82 5738.82 67.21 

916.69 5706.69 56.24 

1008.81 5878.81 51.24 

1001.42 5636.42 50.16 

943.62 5793.62 57.39 

Average 964.88 5750.88 56.45 

P = 1000 
g = 1000 

co = 0.7 
mu = 0.2 

930.64 5685.64 53.08 

934.64 5679.64 51.73 

913.61 5628.61 53.90 

917.84 5577.84 52.81 

1018.97 5748.97 51.49 
Average 943.14 5664.14 52.60 

P = 1000 
g = 1000 

co = 0.8 
mu = 0.1 

866.48 5716.48 57.91 

943.25 5698.25 56.68 

914.88 5694.88 55.51 

924.22 5864.22 57.69 

944.31 5814.31 57.46 
Average 918.63 5757.63 57.05 

P = 1000 

g = 1000 
co = 0.8 

mu = 0.2 

880.85 5570.85 56.91 

860.57 5845.57 55.96 

907.78 5572.78 55.34 

964.34 5934.34 55.79 

930.20 5740.20 57.99 

Average 908.75 5732.75 56.40 

 

SA Results  

 

Based on the most optimal parameter tuning for determining the minimum distribution distance, the results of 

processing the CVRPTW using SA are presented in Table 6. 

 

Based on 10 experiments each case, the minimum travelled distance achieved using the Simulated Annealing 

(SA) method in experiment 4 on case 1 was 296.99 km, the total travel time was 556.99 minutes, with a 

computation time of 58.65 seconds.  Then, case 2 was 300.58 km, the total travel time was 860.58 minutes, with 

a computation time of 34.78 seconds. The case 3 was 403.48 km, the total travel time was 1463.48 minutes, with 

a computation time of 63.40 seconds.  Then, case 4 was 522.98 km, the total travel time was 2022.98 minutes, 

with a computation time of 80.72 seconds. The process of running the SA method in experiment 4 case 4 to 

minimize the total travel distance is illustrated in Figure 2. The division of nodes for each vehicle from the 

solution of case 4 is detailed in Table 7. 

 
Table 6. SA results in average 

Case 
Number of 

vehicles 

Number of 

destinations 

Total travelled 

distance (Km) 

Total travel time 

(minutes) 

Computation 

time (seconds) 

1 6 20 296.99 556.99 58.65 
2 6 50 300.58 860.58 34.78 

3 6 100 403.48 1463.48 63.40 
4 6 150 522.98 2022.98 80.72 

 

Figure 2 illustrates that at temperatures approaching 1000, the minimum distance increases slightly up to a 

temperature of 1200. This indicates that the exploration and exploitation process is generally running well and 

does not show signs of premature convergence. As the temperature decreases, the SA method effectively 

explores and exploits the solution space, maintaining a balance that prevents early convergence and ensures a 

thorough search for the optimal solution. In general, the more cases there are, the longer the computing time 

will be. 

 

Based on the data processing results for bread distribution using the Simulated Annealing (SA) method, it can 

provide optimal distribution route suggestions. However, there is an imbalance in the assignment of tasks to 

each vehicle, resulting in an unequal workload distribution among the vehicles. 
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Figure 2. Fourth case iteration process of SA 

 

Table 7. ALNS results in average 

Case 
Number of 

vehicles 

Number of 

destinations 

Total travelled 

distance (Km) 

Total travel time 

(minutes) 

Computation 

time (seconds) 

1 6 20 128.03 338.03 3.42 

2 6 50 177.30 645.30 4.90 

3 6 100 331.11 1371.11 7.50 

4 6 150 424.56 1924.56 7.95 

 

ALNS Results 

 

Based on the most optimal parameter tuning for determining the minimum travelled distance, the results of 

processing the CVRPTW using ALNS are presented in Table 7. 

 

Based on 10 experiments in each case, the minimum travelled distance, minimum travel time dan computation 

time achieved using the Adaptive Large Neighborhood Search (ALNS) method show the different values in 

Table 7. 

 

According to Figure 3 as iteration process of ALNS from case 4, it shows that up to iteration 800, the minimum 

distance remains relatively stable, but after iteration 800, there is a significant reduction in the minimum 

distance until convergence is achieved around iteration 1000. Overall, the exploration and exploitation processes 

are running well, indicating an initial tendency towards premature convergence that is effectively prevented by 

a sufficiently high number of iterations, which is 1000 iterations. 
 

 
Figure 3. Fourth case iteration process of ALNS 
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Based on the data processing, the ALNS can allocate tasks in a more balanced manner, ensuring that only five 

vehicles are needed. This optimization can offer significant benefits for the company by improving fuel efficiency 

and allowing the reallocation of resources to other tasks. 

 

GA Results 

 

Based on the most optimal parameter tuning for determining the minimum distribution distance, the results of 

processing the CVRPTW using GA are presented in Table 8. 
 
Table 8. GA results in average 

Case Number of vehicles 
Number of 

destinations 

Total travelled 

distance (Km) 

Total travel time 

(minutes) 

Computation 

time (seconds) 

1 6 20 298.36 548.36 20.47 

2 6 50 502.76 1062.76 15.56 

3 6 100 731.32 1791.32 10.83 

4 6 150 916.66 2416.66 9.86 

 

Based on 10 experiments in each case, the minimum travelled distance, minimum travel time dan computation 

time achieved using the Adaptive Large Neighborhood Search (ALNS) method show the different values in 

table 7. The process of running the GA method in case 4 to minimize the total travelled distance is illustrated 

in Figure 4.  

 
Figure 4. Fourth case of the iteration process of GA 

 

Based on Figure 4, it shows that at generations approaching 300, the minimum distance stabilizes and remains 

consistent until generation 500. Overall, the exploration and exploitation processes are running well and do not 

indicate any signs of premature convergence. 

 

Like SA, the results of GA yielded an imbalance in the assignment of tasks to each vehicle, resulting in an 

unequal workload distribution among the vehicles. Additionally, the minimum distance results obtained with 

the GA method cannot be recommended. This is due to the significantly higher minimum distance value 

compared to other methods. 

 

Algorithm Comparison 

 

Comparison analysis is conducted to determine the reliability and stability of the algorithms in producing 

optimal solutions. As shown in Figures 5, 6, and 7, the processing results using the SA, ALNS, and GA methods 

indicate that the ALNS method produces the most optimal solutions compared to SA and GA. The ALNS 

method has the most optimal solution in terms of total distance traveled and total travel time. Therefore, the 

distribution routes generated by the ALNS method are selected as the recommended solution. 

 

Compared to the GA method, which is a population-based method, the SA and ALNS methods, which are 

trajectory-based, provide better results. As shown in Table 8, the total distance and travel time produced by the 



Fauzi et al. / Optimizing Vehicle Routing with Time Windows Constraints / JTI, Vol. 27, No. 1., June 2025, pp.1-20 

15 

GA method are significantly different from those produced by the SA and ALNS methods. Several factors could 

explain why the GA method's results are less optimal, such as an insufficient number of iterations and a lower 

crossover rate (co), leading to local optima. However, increasing the number of iterations can result in longer 

running times. 

 

The minimum distance comparison between the SA, ALNS, and GA methods in the previous sub-chapter shows 

that the ALNS method produces the shortest distance, followed by the SA method. The results of the two 

methods are close enough to validate the algorithms against each other. Interestingly, the results obtained with 

the GA method show almost double the minimum distribution distance compared to the SA and ALNS methods. 

This anomaly may be due to non-optimal GA parameters, indicating a need for further experimentation to 

achieve a minimum distance comparable to the SA and ALNS results. Similarly, the travel time results for the 

three methods correlate with the distribution distance and the loading/unloading service time. 

 

 

Figure 5. Comparison of minimum total travel distance 

 

The bar chart presented in Figure 5 provides a comparative analysis of the minimum total travel distances for 

three optimization methods including Simulated Annealing (SA), Adaptive Large Neighborhood Search 

(ALNS), and Genetic Algorithm (GA) across four cases. It reveals distinct performance trends: ALNS generally 

excels, particularly in all cases, by achieving significantly lower travel distances compared to SA and GA, 

highlighting its robust capability in diverse and complex scenarios. However, its performance drops in Case 4, 

where ALNS demonstrates superior efficiency, suggesting its effectiveness in dynamically adapting search 

strategies to complex challenges. SA, while consistently providing moderate results, does not achieve the lowest 

travel distances in any case, indicating its utility as a stable but not always optimal choice 

 

 

Figure 6. Comparison of minimum total travel time 

 

Figure 6 explains that travel time is obtained from the arrival time of each vehicle so that it aligns time windows 

or operational times at the destination point. Compared with the time windows among destinations, case 1 and 

case 2 did not have routing that violated the expiration and operational time for each destination since some 

destinations have 15 and 24 hours per day.  However, case 3 and 4 had a high travel time, over 24 hours, but 

still tolerant and did not have more than 3 days of expiration time on average. That issue might be caused by a 

limited number of vehicles for case 3 and 4. Based on figure 6 the results reveal that ALNS generally maintains 

consistently lower travel times in all cases, suggesting its efficiency in optimizing travel time in these scenarios. 

This indicates that ALNS often provide more optimal solutions for reducing travel times.  
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Figure 7. Comparison of minimum total computation time 

 

Based on Figure 7, the bar chart clearly illustrates varying efficiencies of the methods in computational 

performance. In Case 4, GA and ALNS show similar, low computation times, while GA significantly exceeds 

these, indicating a possibly less efficient computational process for this case. Moving to all cases, ALNS displays 

the lowest computation times, suggesting its algorithms may be particularly optimized for efficient computation 

in these scenarios. GA, while showing improvement, still requires longer computation times. In Case 4, however, 

ALNS and GA are almost equal in their computation times, which are considerably less than that of SA. 

 

The minimum distance comparison between the SA, ALNS, and GA methods in the previous sub-chapter shows 

that the ALNS method produces the shortest distance, followed by the SA method. The results of the two 

methods are close enough to validate the algorithms against each other. Interestingly, the results obtained with 

the GA method show almost double the minimum distribution distance compared to the SA and ALNS methods. 

This anomaly may be due to non-optimal GA parameters, indicating a need for further experimentation to 

achieve a minimum distance comparable to the SA and ALNS results. Similarly, the travel time results for the 

three methods correlate with the distribution distance and the loading/unloading service time. 

 

The solutions obtained using the SA and ALNS methods differ significantly from the GA method but not 

drastically from each other. On average, the total distance using the SA and ALNS methods shows a difference 

of nearly 100 km, and the total travel time differs by about 100 minutes. This significant difference impacts the 

distribution of goods by reducing operational costs. However, the computation time comparison between the SA 

and ALNS methods shows that ALNS is far superior. The SA method requires an average computation time, 

demonstrating that the ALNS method is more efficient in producing better solutions in a shorter time. Figure 8 

presents an example of the route obtained by ALNS in case 1. 
 

 
Figure 8. Example routing of case 1 with 20 stores 
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The analysis of variance (One-Way ANOVA) and Post Hoc Tukey tests conducted on four different cases reveals 

significant differences among the three tested method including Simulated Annealing (SA), Adaptive Large 

Neighborhood Search (ALNS), and Genetic Algorithm (GA) across three metrics consist of Travel Distance, 

Travel Time, and Computation Time. Based on the ANOVA result the exceedingly small p-values (0.000) in 

each case indicate that the differences between these methods are statistically significant. Tables 9-12 present 

the results of one-way ANOVA and post hoc Tukey for case 1, 2, 3, and 4, respectively. 
 

Table 9. Case 1 result of one-way ANOVA and post hoc Tukey 

 
Case 

1 (Travel 

distance) 

 
Case 

1 (Travel 

time) 

 
Case 

1 (Computation 

time) 

p-value 0.000  p-value 0.000  p-value 0.000 

Method Mean Grouping  Mean Grouping  Mean Grouping 

SA 296.99 A  556.99 A  58.650 A 

ALNS 128.03 B  338.03 C  3.418 C 

GA 298.36 A  548.36 B  20.475 B 

 

According to the results of case 1, both SA and GA showed similar superiority over ALNS in terms of travel 

distance, both being categorized in group A. However, in travel time, SA significantly excelled, recording the 

fastest mean time, and placing in a separate group (A), while GA and ALNS were categorized in groups B and 

C. Based on the computational time, ALNS again stood out with the shortest computation time, followed by GA 

and SA. 

 
Table 10. Case 2 result of one-way ANOVA and post hoc Tukey 

 
Case 

2 (Travel 

distance) 

 
Case 

2 (Travel 

time) 

 
Case 

2 (Computation 

time) 

P-value 0.000  P-value 0.000  P-value 0.000 

Method Mean Grouping  Mean Grouping  Mean Grouping 

SA 300.58 B  860.58 B  34.776 A 

ALNS 177.30 C  645.30 C  4.901 C 

GA 502.76 A  1062.76 A  15.560 B 

 

Almost similar to the previous case, case 2 depicts a similar pattern where GA consistently demonstrated less 

efficiency, being ranked in the top group (A) for both Travel Distance and Travel Time, indicating the longest 

distance and duration. Conversely, SA and ALNS were placed in more favorable groups, with ALNS showing 

the highest efficiency. For the computational time, ALNS maintained the lead with the quickest time. 

 
Table 11. Case 3 result of one-way ANOVA and post hoc Tukey 

 
Case 

3 (Travel 

distance) 

 
Case 

3 (Travel 

time) 

 
Case 

3 (Computation 

time) 

p-value 0.000  p-value 0.000  p-value 0.000 

Method Mean Grouping  Mean Grouping  Mean Grouping 

SA 403.48 B  1463.48 B  63.400 A 

ALNS 331.11 C  1371.11 C  7.498 B 

GA 731.30 A  1791.30 A  10.829 B 

 

Based on Table 11, GA again showed the furthest Travel Distance and the longest Travel Time, indicating lower 

performance compared to SA and ALNS who exhibited more efficient metrics. Nevertheless, in Computational 

Time, ALNS presented the fastest time, showcasing higher computational efficiency than the other two methods. 
 

Table 12. Case 4 result of one-way ANOVA and post hoc Tukey 

 
Case 

4 (Travel 

distance) 

 
Case 

4 (Travel 

time) 

 
Case 

4 (Computation 

time) 

p-value 0.000  p-value 0.000  p-value 0.000 

Method Mean Grouping  Mean Grouping  Mean Grouping 

SA 522.98 B  2022.98 B  80.720 A 

ALNS 424.56 C  1924.56 C  7.946 B 

GA 916.66 A  2416.66 A  9.864 B 

 

Case 4 reconfirmed this trend with GA requiring the shortest distance and longest travel time. Although SA 

recorded higher values in Computational Time, ALNS continued to exhibit the best computing time, followed 
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by GA in the same group. It means that the computational time between ALNS and GA is not statistically 

significant. These indicate that all three methods show robustness in generating consistent solutions. However, 

the tuning parameters for the SA and GA methods need to be refined to produce even better solutions. 

 

The ANOVA results indicate significant differences among the three methods across all measured metrics, as 

evidenced by p-values all below 0.05. This means that the null hypothesis (H0), which states that there are no 

significant differences in the average performance of these methods, is rejected for all three metrics. Regarding 

Travel Distance, the ALNS method significantly differs from SA and GA, with a lower average travel distance, 

indicating more efficient performance. In contrast, SA and GA do not show significant differences in this metric 

and are grouped together in Group A. For Travel Time, the three methods exhibit significant differences from 

each other. GA has the highest travel time, followed by SA, while ALNS has the lowest travel time, meaning 

this method is significantly faster in terms of travel time. 

 

Finally, in the Computation Time metric, the results show that ALNS has a much lower computation time 

compared to SA and GA, which are grouped into Groups B and C, respectively. ALNS proves to be more efficient 

in terms of computation time, demonstrating the method's capability to complete calculations quickly. Overall, 

the rejection of the null hypothesis across all three metrics demonstrates that ALNS has significant advantages 

over SA and GA in two of the three metrics analyzed. However, all three methods show significant differences 

when compared to each other. 

 

According to the results of One-Way ANOVA and Tukey post-hoc tests, Adaptive Large Neighborhood Search 

(ALNS) showed superior performance compared to Simulated Annealing (SA) and Genetic Algorithm (GA) in 

all cases analyzed. ALNS consistently produced lower average values for distance travel and time travel, while 

having a much faster computation time compared to the other two methods. This shows that ALNS can provide 

a more efficient solution in terms of saving distance and time traveled, while solving the problem with a shorter 

computation time, making it the best choice in this optimization. 

 

In contrast, SA, and GA, although sometimes showing good results in some categories, tend to be slower and 

less efficient in time and distance travel. GA often came out on top in terms of distance and time, while SA 

excelled in some cases but was still slower in terms of computation compared to ALNS. Thus, ALNS is the most 

recommended method to use, as it provides optimal results with high efficiency in all aspects analyzed. 

 

Conclusions 

 
This study tackles these the CVRPTW using a case study of bread distribution. The main objectives are to 

minimize the total distance traveled by all vehicles of four different cases and each case provides 10 experiments, 

ensures timely fulfillment of all delivery demands, and offer recommendations for companies to optimize their 

delivery routes and improve delivery times. Three methods are developed: SA, ALNS, and GA. Parameter 

selection was conducted using the Design of Experiment (DOE). There are four cases that have different 

numbers of stores, the first case is 20 stores, the second case is 50 stores, the third case is 100 stores, and the 

fourth case is 150 stores. The parameter selection process with DOE was conducted using the fourth case. 

 

Results from the DOE for the SA method, the best parameters were determined to be T0 = 2000 and α = 0.99. 

For the ALNS method, the optimal parameters were T = 1000 and an upper DoD limit of 0.5. The best 

parameters for the GA method were a population size of 1000, 500 generations, a crossover rate of 0.8, and a 

mutation rate of 0.2. Using these parameters yielded the smallest average minimum distribution distances. 

 

ALNS tends to offer the most efficient solutions in terms of distance and travel time in most cases, but at the 

cost of longer computation times, which may be a consideration in applications requiring rapid response. SA 

provides a balance between computational time efficiency and reasonably good outcomes in travel distance and 

time, making it a considerable option depending on specific usage needs. GA, meanwhile, might be less favored 

due to consistently lower performance in travel efficiency. The choice of method will heavily depend on the 

priorities between time, distance, and available computational resources. 

 

The comparison between the SA, ALNS, and GA models in this study shows that the ALNS method provides 

the smallest distance and shortest travel time in all four cases. Using the four cases in order (e.g. case 1, 2, 3, 

and 4), the ALNS method produces the average smallest distance with the minimum travel distance of 128.03 

km, 177.30 km, 331.11 km, and 414.86 km, compared to the SA method with a minimum travel distance (i.e. in 
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average) of 296.99 km, 300.58 km, 403.48 km, and 495.29 km and the GA method with a minimum travel 

distance (i.e. in average) of 298.36 km, 502.76 km, 731.32 km, and  869.51 km. According to the minimum travel 

distance result of three approximation methods, on average, ALNS had a more efficient 30.02% than SA and 

57.21% than GA. Statistical analysis to measure robustness for the fourth case reveals that the ALNS method 

significantly outperforms SA and GA in both Travel Distance and Computation Time, demonstrating greater 

efficiency. For Travel Time, all three methods differ significantly, with ALNS showing the fastest performance. 

Overall, ALNS is the most effective method among the three evaluated. 

 

The superior performance of the ALNS method can be attributed to its better diversification capability compared 

to SA and GA. This means that ALNS can explore the search space more broadly and effectively, making it 

more likely to find optimal solutions. Additionally, ALNS can easily adapt to solve various types of problems 

due to its more extensive parameter set compared to the other two methods. However, the comparison of the 

SA, ALNS, and GA methods in this study needs to be tested with different data to determine if ALNS 

consistently outperforms SA and GA. Similar problems involving route determination with additional variables 

and different data might yield different results. Therefore, although the ALNS model in this study outperforms 

SA and GA, the results may change with different data or additional variables. 

 

Based on the discussion and analysis, the suggestion for further research is to improve the process of the 

algorithm so that it does not get trapped in local optima, as in evaluating fitness, especially in GA. Fitness 

evaluation can be done adaptively so that the exploration and exploitation process of finding solutions becomes 

more effective. 
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