Performansi Algoritma CODEQ dalam Penyelesaian Vehicle Routing Problem


  • Annisa Kesy Garside Jurusan Teknik Industri, Universitas Muhammadiyah Malang. Jl. Raya Tlogomas No. 246, Malang 65144
  • Satya Sudaningtyas Jurusan Teknik Industri, Universitas Muhammadiyah Malang. Jl. Raya Tlogomas No. 246, Malang 65144



Algorithm, meta-heuristic, vehicle routing problem, CODEQ


Genetic Algorithm, Tabu Search, Simulated Annealing, and Ant Colony Optimization showed a good performance in solving vehicle routing problem. However, the generated solution of those algorithms was changeable regarding on the input parameter of each algorithm. CODEQ is a new, parameter free meta-heuristic algorithm that had been successfully used to solve constrained optimization problems, integer programming, and feed-forward neural network. The purpose of this research are improving CODEQ algorithm to solve vehicle routing problem and testing the performance of the improved algorithm. CODEQ algorithm is started with population initiation as initial solution, generated of mutant vector for each parent in every iteration, replacement of parent by mutant when fitness function value of mutant is better than parent’s, generated of new vector for each iteration based on opposition value or chaos principle, replacement of worst solution by new vector when fitness function value of new vector is better, iteration ceasing when stooping criterion is achieved, and sub-tour determination based on vehicle capacity constraint. The result showed that the average deviation of the best-known and the best-test value is 6.35%. Therefore, CODEQ algorithm is good in solving vehicle routing problem.


Chiou, J. and Chang, C., A Novel Evolutionary Algorithm for Capacitator Placement in Distribution Systems, Journal of Engineering Technology, 2(3), 2013.

Christofides, N. and Eilon, S., “Expected Dis¬tances in Distribution Problems”. Operational Research Quarterly, 20, 1969, pp. 437-443.

Fuellerer, G., Transportatation Logistics, URL common/transportationlogistics.pdf>, diakses 16 April 2014.

Indriana, Y., Perencanaan Rute Pendistribusian Produk dengan Menggunakan Metode Saving Matriks untuk Menghemat Biaya Transportasi (Studi Kasus di CV. Cempaka Tulungagung), Skripsi Jurusan Teknik Industri. Universitas Muhammadiyah Malang, 2011.

Lawler, E. L., Combinatorial Optimization: Networks and Matroids. US America, 1976.

Kallehauge, B., J. Larsen, dan O. B. G. Marsen, Lagrangean Duality Applied on Vehicle Routing with Time Windows. Technical Report. IMM, Technical University of Denmark, 2001.

Mingyong, L. dan C. Erbao, An Improved Differential Algorithm for Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows. Journal of Engineering Applications of Artificial Intelegence, 23, 2010, pp. 188-195.

Narendra, Y. N., Penggunaan Metode CODEQ untuk Menyelesaikan Permasalahan Capacitated Vehicle Routing Problem, Tugas Akhir Jurusan Teknik Industri, Institut Teknologi Sepuluh Nopember, Surabaya, 2010.

Omran, M., CODEQ: An Efficient Meta-Heuristic for Continuous Global Optimization. International Journal of Metaheuristic, 1(2), 2010, pp. 108-131.

Omran, M. G. H dan A. Salman, Constrained Optimization using CODEQ. Journal of Chaos, Solutions and Fractal, 42, 2009, pp. 662-668.

Omran, M. G. H dan F. al-Adwani, 2009. "Using CODEQ to Train Feed-Forward Neural Networks". e-print, Cornell University Library, <URL: , papers/ 1002/ 1002.0745. pdf>, diakses pada 3 Maret 2012.

Omran, M. G. H dan S. al-Sharhan, Optimization of Discrete Values Using Recent Variants of Differential Evolution, Proceedings of IAESTED International Conference on Computational Intelligence, 2009.

Rera, G. F., Penerapan Metode Cross Entropy dalam Penyelesaian Capacitated Vehicle Routing Problem (Studi Kasus: Distribusi Koran Jawa Pos se-Surabaya, Tugas Akhir Jurusan Teknik Industri. Institut Teknologi Sepuluh Nopember, Surabaya, 2010.