Design for Manufacturing and Assembly Optimization of Home-Scale Biodigester-Composter Using VDI 2222 and Finite Element Analysis Methods

Authors

  • Dewa Kusuma Wijaya Dian Nuswantoro University, Semarang
  • Herwin Suprijono Dian Nuswantoro University, Semarang
  • Heru Agus Santoso Dian Nuswantoro University, Semarang
  • Kusmiyati Kusmiyati Dian Nuswantoro University, Semarang
  • Muhammad Agusdika Ridho Muchti Dian Nuswantoro University, Semarang

Keywords:

DFMA, Optimization, Biodigester-Composter, VDI 2222, FEA

Abstract

This research focused on the Design for Manufacturing and Assembly (DFMA) optimization of home-scale biodigester-composter machines. The aims to determine feasibility from technical-economic aspects. The technique was to design the machine's mechanical process, physical, and constituent components. There are two methods conducted on this research, VDI 2222 to optimize and Finite Element Analysis (FEA) to assess the optimal quality results of the machine design based on simulation analysis. This research ended with making a physical prototype of a home-scale biodigester-composter machine using the optimal design, then validating it with a working test of the machine. The results of the VDI 2222 method show an optimal design concept through the structure of the working mechanism. All its constituent components match with the ten target specifications and the machine manufacturing cost of IDR 2,393,000, as well as the assembly chart design for each constituent component. These results are also evaluated using the FEA method. The resistance value of the frame system to maximum Von Mises Stress is obtained at 128.75 MPa with a minimum value of 6.93e-04 MPa. It is concluded to be acceptable at withstanding normal and shear stresses effectively with a relatively small displacement value of 0 to 0.47 mm. The equivalent strain value results are 3.89e-09 ul to 5.83e-04 ul and safety factor value results are 1.93 to 15 ul. It can be concluded that the frame system design concept is safe.

Author Biographies

Dewa Kusuma Wijaya, Dian Nuswantoro University, Semarang

Faculty of Engineering, Industrial Engineering Department, Dian Nuswantoro University
Jl. Nakula I No. 5-11, Semarang 50131, Indonesia

Herwin Suprijono, Dian Nuswantoro University, Semarang

Faculty of Engineering, Industrial Engineering Department, Dian Nuswantoro University
Jl. Nakula I No. 5-11, Semarang 50131, Indonesia

Heru Agus Santoso, Dian Nuswantoro University, Semarang

Faculty of Engineering, Industrial Engineering Department, Dian Nuswantoro University
Jl. Nakula I No. 5-11, Semarang 50131, Indonesia

Kusmiyati Kusmiyati, Dian Nuswantoro University, Semarang

Faculty of Engineering, Industrial Engineering Department, Dian Nuswantoro University
Jl. Nakula I No. 5-11, Semarang 50131, Indonesia

Muhammad Agusdika Ridho Muchti, Dian Nuswantoro University, Semarang

Faculty of Engineering, Industrial Engineering Department, Dian Nuswantoro University
Jl. Nakula I No. 5-11, Semarang 50131, Indonesia

References

A. U. Farahdiba, I. D. A. A. Warmadewanthi, Y. Fransiscus, E. Rosyidah, J. Hermana, and A. Yuniarto, “The present and proposed sustainable food waste treatment technology in Indonesia: A review,” Environ Technol Innov, vol. 32, Nov. 2023, doi: 10.1016/j.eti.2023.103256.

K. Obaideen et al., “Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines,” Feb. 01, 2022, Taiwan Institute of Chemical Engineers. doi: 10.1016/j.jtice.2022.104207.

Z. U. R. Afridi et al., “Biogas as sustainable approach for social uplift in South East Asian Region,” Energy Reports, vol. 10, pp. 4808–4818, Nov. 2023, doi: 10.1016/j.egyr.2023.11.037.

M. Xu et al., “From waste to wealth: Innovations in organic solid waste composting,” Jul. 15, 2023, Academic Press Inc. doi: 10.1016/j.envres.2023.115977.

C. Vlachokostas, C. Achillas, V. Diamantis, A. V. Michailidou, K. Baginetas, and D. Aidonis, “Supporting decision making to achieve circularity via a biodegradable waste-to-bioenergy and compost facility,” J Environ Manage, vol. 285, May 2021, doi: 10.1016/j.jenvman.2021.112215.

M. Xu et al., “Role of multistage inoculation on the co-composting of food waste and biogas residue,” Bioresour Technol, vol. 361, Oct. 2022, doi: 10.1016/j.biortech.2022.127681.

M. A. Nasution, D. S. Wibawa, T. Ahamed, and R. Noguchi, “Comparative environmental impact evaluation of palm oil mill effluent treatment using a life cycle assessment approach: A case study based on composting and a combination for biogas technologies in North Sumatera of Indonesia,” J Clean Prod, vol. 184, pp. 1028–1040, May 2018, doi: 10.1016/j.jclepro.2018.02.299.

P. Z. Morsink-Georgali, A. Kylili, P. A. Fokaides, and A. M. Papadopoulos, “Compost versus biogas treatment of sewage sludge dilemma assessment using life cycle analysis,” J Clean Prod, vol. 350, May 2022, doi: 10.1016/j.jclepro.2022.131490.

F. M. Díez Ramírez, F. B. Muñoz, E. L. López, and A. V. Polanco, “Thermal evaluation of structural concretes for construction of biodigesters,” Energy Build, vol. 58, pp. 310–318, 2013, doi: 10.1016/j.enbuild.2012.11.036.

M. T. Smith, J. Schroenn Goebel, and J. N. Blignaut, “The financial and economic feasibility of rural household biodigesters for poor communities in South Africa,” Waste Management, vol. 34, no. 2, pp. 352–362, Feb. 2014, doi: 10.1016/j.wasman.2013.10.042.

S. A. Iqbal, S. Rahaman, M. Rahman, and A. Yousuf, “Anaerobic digestion of kitchen waste to produce biogas,” in Procedia Engineering, Elsevier Ltd, 2014, pp. 657–662. doi: 10.1016/j.proeng.2014.11.787.

E. Kebede, J. Gan, and J. M. Kagochi, “Agriculture based energy for rural household income and well-being: East African experience,” Jan. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2015.07.167.

M. Garfí, J. Martí-Herrero, A. Garwood, and I. Ferrer, “Household anaerobic digesters for biogas production in Latin America: A review,” Jul. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.01.071.

R. Jyothilakshmi and S. V. Prakash, “Design, fabrication and experimentation of a small scale anaerobic biodigester for domestic biodegradable solid waste with energy recovery and sizing calculations,” Procedia Environ Sci, vol. 35, pp. 749–755, 2016, doi: 10.1016/j.proenv.2016.07.085.

L. Ferrer-Martí, I. Ferrer, E. Sánchez, and M. Garfí, “A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru,” Nov. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2018.06.064.

M. Célia da Silva Lanna et al., “Household-based biodigesters promote reduction of enteric virus and bacteria in vulnerable and poverty rural area,” Environmental Pollution, vol. 252, pp. 8–13, Sep. 2019, doi: 10.1016/j.envpol.2019.05.104.

T. E. Rasimphi and D. Tinarwo, “Relevance of biogas technology to Vhembe district of the Limpopo province in South Africa,” Mar. 01, 2020, Elsevier B.V. doi: 10.1016/j.btre.2019.e00412.

G. Jabeen et al., “Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan,” Renew Energy, vol. 154, pp. 650–660, Jul. 2020, doi: 10.1016/j.renene.2020.03.049.

C. M. Ajay, S. Mohan, and P. Dinesha, “Decentralized energy from portable biogas digesters using domestic kitchen waste: A review,” Apr. 15, 2021, Elsevier Ltd. doi: 10.1016/j.wasman.2021.02.031.

C. A. Pizarro-Loaiza, A. Antón, M. Torrellas, P. Torres-Lozada, J. Palatsi, and A. Bonmatí, “Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas,” J Clean Prod, vol. 297, May 2021, doi: 10.1016/j.jclepro.2021.126722.

R. H. G. de Jesus, J. T. de Souza, F. N. Puglieri, C. M. Piekarski, and A. C. de Francisco, “Biodigester location problems, its economic–environmental–social aspects and techniques: Areas yet to be explored,” Nov. 01, 2021, Elsevier Ltd. doi: 10.1016/j.egyr.2021.06.090.

S. K. Nuhu, J. A. Gyang, and J. J. Kwarbak, “Production and optimization of biomethane from chicken, food, and sewage wastes: The domestic pilot biodigester performance,” Clean Eng Technol, vol. 5, Dec. 2021, doi: 10.1016/j.clet.2021.100298.

N. Kalaiselvan et al., “A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges,” Chemosphere, vol. 293, Apr. 2022, doi: 10.1016/j.chemosphere.2021.133486.

G. Glivin, V. Mariappan, M. Premalatha, H. Hareesh Krishnan, and S. Joseph Sekhar, “Comparative study of biogas production with cow dung and kitchen waste in Fiber-Reinforced Plastic (FRP) biodigesters,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2264–2267. doi: 10.1016/j.matpr.2021.08.098.

F. J. Andriamanohiarisoamanana et al., “Integration of biogas technology into livestock farming: Study on farmers’ willingness to pay for biodigesters in Madagascar,” Biomass Bioenergy, vol. 164, Sep. 2022, doi: 10.1016/j.biombioe.2022.106557.

M. Ahmad and Y. Wu, “Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development,” Renew Energy, vol. 194, pp. 858–867, Jul. 2022, doi: 10.1016/j.renene.2022.05.135.

M. Ahmad and G. Jabeen, “Biogas technology adoption and household welfare perspectives for sustainable development,” Energy Policy, vol. 181, Oct. 2023, doi: 10.1016/j.enpol.2023.113728.

R. Mrosso, A. C. Mecha, and J. Kiplagat, “Characterization of kitchen and municipal organic waste for biogas production: Effect of parameters,” Heliyon, vol. 9, no. 5, May 2023, doi: 10.1016/j.heliyon.2023.e16360.

G. Namirembe, P. I. Mukwaya, F. Mugagga, and Y. Kisira, “Insights into home biogas technology adoption dynamics through the lens of the diffusion of innovation theory in Uganda,” Energy for Sustainable Development, vol. 80, Jun. 2024, doi: 10.1016/j.esd.2024.101425.

J. Q. Ni, “A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents,” Jun. 01, 2024, Elsevier Ltd. doi: 10.1016/j.rser.2024.114371.

L. Strubbe, A. Dierickx, B. Verbist, A. Denayer, and E. I. P. Volcke, “Household-scale digesters in Rwanda: Performance analysis and net-greenhouse gas effect,” J Clean Prod, vol. 457, p. 142492, Jun. 2024, doi: 10.1016/j.jclepro.2024.142492.

M. Issahaku, N. S. A. Derkyi, and F. Kemausuor, “A systematic review of the design considerations for the operation and maintenance of small-scale biogas digesters,” Heliyon, vol. 10, no. 1, Jan. 2024, doi: 10.1016/j.heliyon.2024.e24019.

M. E. Aksoley, B. Ozcelik, and I. Bican, “Comparison of bursting pressure results of LPG tank using experimental and finite element method,” J Hazard Mater, vol. 151, no. 2–3, pp. 699–709, Mar. 2008, doi: 10.1016/j.jhazmat.2007.06.051.

M. Mirzaei, M. Malekan, and E. Sheibani, “Failure analysis and finite element simulation of deformation and fracture of an exploded CNG fuel tank,” Eng Fail Anal, vol. 30, pp. 91–98, Jun. 2013, doi: 10.1016/j.engfailanal.2013.01.015.

D. García-G, J. Barco-Burgos, J. Chaparro, U. Eicker, J. Cárdenas D.R, and A. Saldaña-Robles, “Analyzing joint efficiency in storage tanks: A comparative study of API 650 standard and API 579 using finite element analysis for enhanced reliability,” International Journal of Pressure Vessels and Piping, vol. 207, Feb. 2024, doi: 10.1016/j.ijpvp.2023.105113.

R. Bhattacharyya, O. Russian, O. Dereli, and M. Ozbey, “A finite element analysis-based approach for blast-resistant design of LNG containment tanks,” Structures, vol. 59, Jan. 2024, doi: 10.1016/j.istruc.2023.105757.

F. Ardani, D. Caesaron, and A. Kusnayat, “Design of flood barrier with developed iot-based flood detection and monitoring systems,” Jurnal Teknik Industri, vol. 25, no. 2, pp. 111–120, Sep. 2023, doi: 10.9744/jti.25.2.111-120.

I. Graessler and J. Hentze, “Transformations in product development to enable globally distributed self-organizing production systems,” in Procedia CIRP, Elsevier B.V., 2019, pp. 474–479. doi: 10.1016/j.procir.2019.04.212.

N. Emminghaus et al., “PBF-LB/M process under a silane-doped argon atmosphere: Preliminary studies and development of an innovative machine concept,” Advances in Industrial and Manufacturing Engineering, vol. 2, May 2021, doi: 10.1016/j.aime.2021.100040.

C. P. M. Sianipar, “Environmentally-appropriate technology under lack of resources and knowledge: Solar-powered cocoa dryer in rural Nias, Indonesia,” Clean Eng Technol, vol. 8, Jun. 2022, doi: 10.1016/j.clet.2022.100494.

R. Löffler, S. Tremmel, and R. Hornfeck, “Development and implementation of a guideline for the combination of additively manufactured joint assemblies with wire actuators made of shape memory alloys,” in Procedia CIRP, Elsevier B.V., 2023, pp. 1–6. doi: 10.1016/j.procir.2023.02.125.

Downloads

Published

2024-09-24

How to Cite

[1]
D. K. Wijaya, H. Suprijono, H. A. Santoso, K. Kusmiyati, and M. A. R. Muchti, “Design for Manufacturing and Assembly Optimization of Home-Scale Biodigester-Composter Using VDI 2222 and Finite Element Analysis Methods”, Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri, vol. 26, no. 2, Sep. 2024.