Technical Economic Optimization Analysis for Cost-Effective Process of CNC Laser Machine G-Weike LC6090

Using Simplex Lattice – Centroid and Full Costing Methods

Authors

  • Rudi Tjahyono Universitas Dian Nuswantoro

Keywords:

Technical Economic Optimization, Cost-Effective, CNC Laser G-Weike LC6090, Simplex Lattice – Centroid, Full Costing

Abstract

This research focuses on the technical economic optimization of the CNC CO2 laser machine G-Weike type LC6090 for engraving acrylic material. Because there is no ideal tabulation that serves as a guide for the operator in setting machine parameters, one of the issues in operating the machine is that the engraving process for acrylic materials is still traditionally done through estimation or approximation. Indeed, this affects process inconsistency, leading to resource waste and machine operations due to defects. Since defective process results cannot be fixed or recycled, the cost of raw materials and machining will inevitably be incurred. This study emphasizes the principle of effectiveness in optimizing the laser machine-level settings for the engraving process using the Simplex Lattice-Centroid approach to generate a tabulation of optimal settings. With a speed variable level setting of 55,556 mm/s, a power of 50%, and an interval of 0.083782, the ideal results value at processing time is 1.240184, depth is 0.054967, and roughness is 0.012728. The scan speed variable strongly correlates with optimization of depth, roughness, and processing time. The scan interval variable has a moderate correlation with depth, and the power variable has a moderate correlation with processing time and roughness. The best cost efficacy in the process was then ascertained by measuring cost-effectiveness using the Full Costing method. The cost-effective results are IDR 46,778.08 per hour or IDR 13,472,087.04 annually. Using cost-effective measurements can produce a Life Cycle Cost (LCC) of the CNC laser machine value of IDR 134,720,870.4 per 10-year service lifetime.

References

V. C. Reddy, G. Harinath Gowd, and M. L. S. D. Kumar, “Empirical modeling & optimization of laser micro-machining process parameters using genetic algorithm,” Materialstoday: Proceedings, vol.5, no. 2, part 2. pp. 8095-8103, 2018. https://doi.org/10.1016/j.matpr.2017.11.496

K. Venkatesan, “Optimization of surface roughness and power consumption in laser-assisted machining of inconel 718 by taguchi based response surface methodology,” Materialstoday: Proceedings, vol.5, no. 5, part 2. pp. 11326-11335, 2018. https://doi.org/10.1016/j.matpr.2018.02.099

P. K. Shrivastava and A. Kumar Pandey, “Optimization of machining parameter during the laser cutting of inconel-718 sheet using regression analysis-based particle swarm optimization method,” Materialstoday: Proceedings, vol.5, no. 11, part 3. pp. 24167-24176, 2018. https://doi.org/10.1016/j.matpr.2018.10.211

Y. Chang and A. Sun, “Process optimization of electrolyte-assisted ultraviolet laser machining of ceramic microhole,” Optik (Stuttg), vol. 201, Jan. 2020, doi: 10.1016/j.ijleo.2019.163207.

Q. Liu et al., “Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms,” Acta Mater, vol. 201, pp. 316–328, Dec. 2020, doi: 10.1016/j.actamat.2020.10.010.

V. Senthil Kannan, K. Lenin, and P. Navneethakrishnan, “Machining parameters optimization in laser beam machining for micro elliptical profiles using TOPSIS method,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 727–730. doi: 10.1016/j.matpr.2019.06.747.

C. Anghel, K. Gupta, and T. C. Jen, “Optimization of laser machining parameters and surface integrity analysis of the fabricated miniature gears,” in Procedia Manufacturing, Elsevier B.V., 2020, pp. 878–884. doi: 10.1016/j.promfg.2020.10.123.

A. N. Bakhtiyari, Z. Wang, L. Wang, and H. Zheng, “A review on applications of artificial intelligence in modeling and optimization of laser beam machining,” Mar. 01, 2021, Elsevier Ltd. doi: 10.1016/j.optlastec.2020.106721.

T. Muthuramalingam, R. Akash, S. Krishnan, N. H. Phan, V. N. Pi, and A. H. Elsheikh, “Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process,” J Manuf Process, vol. 62, pp. 1–6, Feb. 2021, doi: 10.1016/j.jmapro.2020.12.008.

Z. Zhang et al., “Optimization of low-power femtosecond laser trepan drilling by machine learning and a high-throughput multi-objective genetic algorithm,” Opt Laser Technol, vol. 148, Apr. 2022, doi: 10.1016/j.optlastec.2021.107688.

V. B. Magdum, J. K. Kittur, and S. C. Kulkarni, “Surface roughness optimization in laser machining of stainless steel 304 using response surface methodology,” Mater Today Proc, vol. 59, pp. 540–546, Jan. 2022, doi: 10.1016/j.matpr.2021.11.570.

G. Alsoruji, T. Muthuramalingam, E. B. Moustafa, and A. Elsheikh, “Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy,” Journal of Materials Research and Technology, vol. 18, pp. 720–730, May 2022, doi: 10.1016/j.jmrt.2022.02.112.

S. Genna, E. Menna, G. Rubino, and F. Trovalusci, “Laser machining of silicon carbide: Experimental analysis and multiobjective optimization,” Ceram Int, vol. 49, no. 7, pp. 10682–10691, Apr. 2023, doi: 10.1016/j.ceramint.2022.11.258.

A. B. Ozhan, G. Demir, and O. Akbulut, “Local optimization of low power laser machining of MgO at the green state enables cost- and energy-efficient benchtop fabrication,” J Manuf Process, vol. 98, pp. 206–215, Jul. 2023, doi: 10.1016/j.jmapro.2023.04.049.

S. Singh, M. Doddamani, and S. Powar, “Multi-objective optimization of machining parameter in laser drilling of glass microballoon/epoxy syntactic foams,” Journal of Materials Research and Technology, vol. 23, pp. 3869–3879, Mar. 2023, doi: 10.1016/j.jmrt.2023.02.025.

A. N. Bakhtiyari, Y. Wu, L. Wang, Z. Wang, and H. Zheng, “Laser machining sapphire via Si-sapphire interface absorption and process optimization using an integrated approach of the Taguchi method with grey relational analysis,” Journal of Materials Research and Technology, vol. 24, pp. 663–674, May 2023, doi: 10.1016/j.jmrt.2023.02.218.

M. Fan, X. Zhou, and J. Song, “Experimental investigation on cutting force and machining parameters optimization in in-situ laser-assisted machining of glass–ceramic,” Opt Laser Technol, vol. 169, Feb. 2024, doi: 10.1016/j.optlastec.2023.110109.

T. Hu, S. Yuan, J. Wei, Y. Liu, and Z. Zhang, “Micro-grooves machining and optimizing on SiC/SiC composites by femtosecond laser-based on response surface methodology,” Ceram Int, vol. 50, no. 1, pp. 1665–1682, Jan. 2024, doi: 10.1016/j.ceramint.2023.10.262.

R. T. Mushtaq et al., “Multi-objective optimization of laser polishing parameters for enhanced mechanical properties, sustainability, and surface finish of 3D-Printed industrial ABS polymers using response surface methodology (RSM),” Journal of Materials Research and Technology, vol. 29, pp. 3168–3184, Mar. 2024, doi: 10.1016/j.jmrt.2024.02.023.

I. M. A. Viegas, A. O. Barradas Filho, E. P. Marques, C. F. Pereira, and A. L. B. Marques, “Oxidative stability of biodiesel by mixture design and a four-component diagram,” Fuel, vol. 219, pp. 389–398, May 2018, doi: 10.1016/j.fuel.2018.01.124.

E. E. Feldshtein, L. N. Dyachkova, and G. M. Królczyk, “On the evaluation of certain strength characteristics and fracture features of iron-based sintered MMCs with nanooxide additives,” Materials Science and Engineering: A, vol. 756, pp. 455–463, May 2019, doi: 10.1016/j.msea.2019.04.044.

M. M. Phiri, M. A. Sibeko, M. J. Phiri, and S. P. Hlangothi, “Effect of free foaming and pre-curing on the thermal, morphological and physical properties of reclaimed tyre rubber foam composites,” J Clean Prod, vol. 218, pp. 665–672, May 2019, doi: 10.1016/j.jclepro.2019.02.051.

Q. Zhang, X. Feng, X. Chen, and K. Lu, “Mix design for recycled aggregate pervious concrete based on response surface methodology,” Constr Build Mater, vol. 259, Oct. 2020, doi: 10.1016/j.conbuildmat.2020.119776.

O. J. Odejobi, A. A. Oladunni, J. A. Sonibare, and I. O. Abegunrin, “Oil yield optimization from co-pyrolysis of low-density polyethylene (LDPE), polystyrene (PS) and polyethylene terephthalate (PET) using simplex lattice mixture design,” Fuel Communications, vol. 2, no. 5, 2020, doi: 10.1016/j.jfueco.2020.10.

J. E. Bolander, J. Eliáš, G. Cusatis, and K. Nagai, “Discrete mechanical models of concrete fracture,” Eng Fract Mech, vol. 257, Nov. 2021, doi: 10.1016/j.engfracmech.2021.108030.

H. P. A. Alves et al., “Processing of mullite–glass ceramics using simplex-centroid design: Densification process dominated by liquid-phase sintering,” Boletin de la Sociedad Espanola de Ceramica y Vidrio, vol. 61, no. 2, pp. 160–168, Mar. 2022, doi: 10.1016/j.bsecv.2020.09.002.

Y. Sun, T. Yang, H. Zhang, H. Tang, and K. Chen, “Stabilization of available arsenic in arsenic-calcium residue (ACR) using a developed cost-effective composite Fe-based stabilizer,” J Environ Chem Eng, vol. 10, no. 2, Apr. 2022, doi: 10.1016/j.jece.2022.107373.

B. Aouan et al., “Development and optimization of geopolymer adsorbent for water treatment: Application of mixture design approach,” J Environ Manage, vol. 338, Jul. 2023, doi: 10.1016/j.jenvman.2023.117853.

B. Aouan, S. Alehyen, M. Fadil, M. El Alouani, H. Saufi, and M. Taibi, “Characteristics, microstructures, and optimization of the geopolymer paste based on three aluminosilicate materials using a mixture design methodology,” Constr Build Mater, vol. 384, Jun. 2023, doi: 10.1016/j.conbuildmat.2023.131475.

H. A. A. Diniz, A. E. Martinelli, K. C. Cabral, R. L. da S. Ferreira, and I. F. D. da Silva, “Synergistic effects of the use of metakaolin, sand and water on the properties of cementitious composites for 3D printing,” Constr Build Mater, vol. 366, Feb. 2023, doi: 10.1016/j.conbuildmat.2022.130277.

S. Kumar, M. K. Singhal, and M. P. Sharma, “Analysis of oil mixing for improvement of biodiesel quality with the application of mixture design method,” Renew Energy, vol. 202, pp. 809–821, Jan. 2023, doi: 10.1016/j.renene.2022.11.097.

F. Ma, H. Zhang, K. K. B. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J Clean Prod, vol. 199, pp. 529–537, Oct. 2018, doi: 10.1016/j.jclepro.2018.07.185.

Y. lun Wang, B. jia Li, S. shuang Li, L. jing Huang, Y. ying Wang, and N. fei Ren, “Fabrication of metal mesh flexible transparent electrodes and heaters by a cost-effective method based on ultrafast laser direct writing,” Opt Laser Technol, vol. 138, Jun. 2021, doi: 10.1016/j.optlastec.2020.106867.

H. Wang et al., “Cost-affordable, biomedical Ti-5Fe alloy developed using elemental powders and laser in-situ alloying additive manufacturing,” Mater Charact, vol. 182, Dec. 2021, doi: 10.1016/j.matchar.2021.111526.

B. M. Fittamami, E. Pujiyanto, and Y. Priyandari, “Multi-objective optimization of machining parameters for multi-pass CNC turning to minimize carbon emissions, energy, noise and cost,” Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri, vol. 23, no. 1, pp. 25–34, May 2021, doi: 10.9744/jti.23.1.25-34.

G. Yuan et al., “Laser welding of carbon-fibre-reinforced polyetherketone and 304 stainless steel: Cost-effective approach using prefabricated holes,” Opt Laser Technol, vol. 152, Aug. 2022, doi: 10.1016/j.optlastec.2022.108185.

Y. C. Chang, S. Wang, R. Deng, S. Li, J. Ji, and C. M. Chong, “Investigation of laser doping and plating process for cost-effective PV metallization,” Solar Energy Materials and Solar Cells, vol. 235, Jan. 2022, doi: 10.1016/j.solmat.2021.111445.

W. Li et al., “A novel milling parameter optimization method based on improved deep reinforcement learning considering machining cost,” J Manuf Process, vol. 84, pp. 1362–1375, Dec. 2022, doi: 10.1016/j.jmapro.2022.11.015.

W. Ding, Q. Tao, J. Chen, G. Chen, X. Qu, and M. Qin, “Enhanced mechanical properties by laser powder bed fusion using cost-effective hydride-dehydride titanium powders,” J Mater Process Technol, vol. 313, Apr. 2023, doi: 10.1016/j.jmatprotec.2023.117887.

T. Marcelina, D. Kusuma Wijaya, R. Tjahyono, and H. Suprijono, “Optimasi Proses Cutting Material Akrilik pada CNC Laser G-Weike LC6090 dengan Metode Simplex Centroid Design dan Optimasi Plot Multirespon,” Jurnal Ilmiah GIGA, vol. 24, no. 1, doi: 10.47313/jig.v%vi%i.1120.

Downloads

Published

2024-08-08

How to Cite

[1]
R. Tjahyono, “Technical Economic Optimization Analysis for Cost-Effective Process of CNC Laser Machine G-Weike LC6090 : Using Simplex Lattice – Centroid and Full Costing Methods”, Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri, vol. 26, no. 2, Aug. 2024.