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__________________________________________________________________________ 
Abstract: This study develops a Heterogeneous Vehicle Routing Problem with Time Windows 

and Multi-Trips (HVRPTWMT) model designed to minimize delivery distances for fresh products. 

The model addresses complex operational constraints inherent in real-world logistics, including 

time windows, heterogeneous fleets, and multi-trip requirements. A quantitative approach was 

employed to formulate the HVRPTWMT model, which was then solved using an analytical 

method to ensure a global optimum solution was found. The model's efficacy was demonstrated 

through its application to historical data from April 10, 2025, yielding an optimal total distance of 

774.45 km across six efficient routes. Sensitivity analysis confirmed the model's robustness and 

responsiveness to critical parameter changes, such as vehicle capacity, demand fluctuations, and 

time limits. The developed HVRPTWMT model provides a globally optimal and rule-compliant 

solution for complex fresh product delivery logistics. 

 

Keywords: Fresh chicken meat, HVRPTWMT, logistics, route optimization, vehicle routing 

problem. 

_________________________________________________________________________ 
 

Introduction 
 

The increasing global population is leading to a rising demand for transportation and logistics, necessitating 

exceptional efficiency for sustainable economic growth. Efficient movement of goods is crucial for business 

success, as distribution can represent 10-15% of the selling price [1]. If this process is hindered, it can result in 

customer dissatisfaction, harm the company's reputation, reduce performance, and even lead to product returns, 

which is a challenge currently being faced by a company. 

 

As a chicken meat producer, the company reported a 3% return in April 2025, achieving 5.9 tons out of a total 

of 197 tons due to delays. Demand for chicken meat is anticipated to increase significantly from 2022 to 2026 

[2]. Currently, determining the company's delivery routes is a manual and complex process, influenced by 

several internal constraints. These include tight deadlines for receiving goods at customer delivery points, the 

need to separate fleets for fresh and frozen products, varying vehicle capacities, limited vehicle availability, and 

restricted trip capacities.  

 

The complexity of a company's delivery routes can be effectively modeled as the Heterogeneous Vehicle Routing 

Problem with Time Windows and Multi-Trips (HVRPTWMT). This mathematical modeling approach was 

selected because it comprehensively addresses the constraints of a heterogeneous fleet, time windows, and 

multi-trip requirements, ultimately helping to identify optimal and compliant routing solutions. Research in the 

HVRPTWMT variant has consistently demonstrated its effectiveness in minimizing distances, costs, and 

delivery times [3, 4]. The study of Vehicle Routing Problems (VRP) has evolved rapidly, utilizing a variety of 

methods to tackle its inherent complexity [5, 6, 7]. Analytical techniques, such as Arc-flow and GNU Linear 

Programming Kit (GLPK), aim to find optimal solutions but often require high computing power. For large-

scale problems, metaheuristic approaches such as Hybrid Heuristic Harmony Search Algorithm (HHHSA), 

Adaptive Large Neighborhood Search (ALNS), which is sometimes combined with Variable Neighborhood 

Descend (VND), and Taboo Search Algorithms are effective choices because they are efficient in finding near-

optimal solutions [7, 8, 9]. In addition, hybrid methods such as integrating Constraint Programming (CP), 
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Genetic Algorithm (GA), Mathematical Programming (MP), or combining Mixed-Integer Programming (MIP) 

and two-stage heuristics combine the strengths of various approaches [10, 11]. 

 

This study identifies a gap in prior research concerning the prioritization of Trip 1 deliveries, particularly 

regarding the use of eight more comprehensive types of constraints within a single model. The objective of this 

study is to develop a mathematical model of the Home Delivery Vehicle Routing Problem with Multiple Time 

Windows (HVRPTWMT) to minimize mileage for a company's operations. The model will consider the diversity 

of vehicle types and capacities, the ability to make multiple trips, and time constraints related to returning to 

the depot, while also integrating specific constraints to prioritize morning deliveries. Additionally, this study 

will analyze how sensitive the model is to changes in various parameters, including the number and capacity of 

vehicles, the quantity and average of customer requests, delivery deadlines, and time windows. The resulting 

minimum mileage from the model will be compared to the company’s existing delivery schedule. The model will 

be developed using analytical methods with Lingo software serving as the solver. 

 

This paper is structured into several sections to give a comprehensive overview of the research conducted. Part 

1 serves as the introduction, while Part 2 outlines the methods employed in the study. Part 3 presents the results 

and discussion, which includes the developed model, sensitivity analysis, and a comparison of the model with 

the actual conditions of a company. Finally, Part 4 summarizes the conclusions drawn from this study. 

 

Literature Review 

 

George Dantzig and John Ramser formally started the Vehicle Routing Problem (VRP) in 1959 in their classic 

paper The Truck Dispatching Problem. Since then, VRP has become a central topic in optimization and logistics 

research, fueling rapid developments in variants and solution approaches. VRP modeling approaches are 

generally classified into four main groups: analytical, metaheuristic, hybrid, and machine learning. 

 

In a metaheuristic approach, studies such as Granular Taboo Search (GTS) and a combination of Adaptive 

Large Neighborhood Search (ALNS) and Variable Neighborhood Descent (VND) are employed. Although the 

ALNS-VND algorithm is not specifically designed for the MT-VRPTW, the experiment confirms its correctness 

and competitiveness in solving the MT-VRPTW [8]. GTS has already analyzed thermodynamic models for a 

VRP problem, which could generate new solutions that focus on reducing the distance-related costs of routes 

[12]. The hybrid approach combines metaheuristics with predictive, exact, or machine learning methods, e.g., 

HHHSA, Hybrid Genetic Algorithm (HGA), Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-

SIH), Simulated Annealing (SA) with Mixed-Integer Linear Programming (MILP), as well as a combination of 

Hybrid Genetic Algorithm-Variable Neighborhood Search (HGA-AVNS) and Graph Convolutional Network 

(GCN), Guided Nondominated Sorting Genetic Algorithm II (G-NSGA-II), and Variable Neighborhood Search-

Nondominated Sorting Genetic Algorithm II (VNS-NSGA-II) with Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) [7, 10, 14, 15, 16, 17, 18].  
 

HHHSA had a clear advantage in generating high-quality solutions and outperformed many traditional 

methods in terms of computational efficiency [7]. The use of the HGA approach for each variant of the problem 

under consideration (with time windows, without time windows, with logical constraints, etc.) significantly 

reduces the optimization time by up to 100 times compared to the traditional method of implementation — 

mathematical programming [10]. HGA-SIH demonstrates highly promising results, consistently outperforming 

state-of-the-art algorithms presented in the existing literature across a range of problem instances [14]. SA can 

obtain optimal solutions for all small and medium instances with significantly lower computational time [15]. 

In the case of a combination of HGA-AVNS and GCN, this method reduces carbon emissions by an average of 

10.15% compared to ignoring time-dependent speeds and speed fluctuations, and by an average of 23.39% in 

comparison to the other algorithms [16]. Using G-NSGA-II can improve the CV-GVRP, which could improve 

customer satisfaction at a lower cost [17]. Finally, real-world case results show that the TDSDGVRPMTW 

solution proposed in this paper is better than the TDGVRPTW and TDMCGVRPTW solutions when combining 

VNS-NSGA-II with TOPSIS [18]. Reinforcement learning approaches such as 2D-Ptr are also used for 

heterogeneous vehicles [19]. Modern approaches based on Reinforcement Learning (RL), such as the RL multi-

agent model for real-time VRPTW, demonstrate relevance for intelligent logistics systems [20]. In addition to 

the above methods, there is also an Evolutionary Algorithm (EA) that provides fuel cost savings [21]. According 

to the minimum travel distance result of three approximation methods, on average, ALNS had a more efficient 

30.02% than SA and 57.21% than GA [22]. 
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Finally, analytical approaches include Branch-and-Price-and-Cut (BPC), the application of GNU Linear 

Programming Kit (GLPK), and MILP for various scenarios such as fuel distribution, electric vehicles, as well as 

heterogeneous vehicles and simultaneous services [3, 4, 5, 6, 23]. In GLPK, there are differences between the 

optimal routes obtained and the existing routes in the company. Despite the difference in the order of cities, the 

optimal methodology requires the use of 3 vehicles, as opposed to the five vehicles used in the authentic scenario. 

A reduction in vehicle utilization implies a diminution in total mileage, thereby inferring that the expenses 

deduced from the model are inferior to tangible expenditures [3]. MILP is used to build mathematical models 

on VRP, multiple-trip, and multiple product split-delivery problems using the exact branch and bound method 

to minimize vehicle mileage [4]. Experiments demonstrate that the proposed BPC achieves high efficiency, 

finding optimal solutions for 82 out of 108 benchmark instances generated by the renowned Solomon's 

instances, and can solve more instances to optimality in a shorter time [5, 6, 23].  

 

In terms of destination functions, dominance is seen in minimizing total mileage [4]. A wide range of constraint 

functions guarantees the realism of VRP solutions. Basic constraints include vehicle capacity and number of 

vehicles [7, 14]. Also consists of the challenges of heterogeneous vehicles [6, 20]. Customer or trip priorities are 

also starting to be modeled [17]. Also, do not forget the limitations of the unloading station's capacity [5]. Electric 

vehicles also have limitations on battery capacity and charging [24]. Time and duration constraints are 

significant, including service time window, maximum route duration, adaptive service time, progressive time 

window adjustment, as well as unloading time and unloading queues [4, 13]. In the service structure, multi-trip 

and split delivery concepts are accommodated, along with simultaneous delivery and pickup [8, 10, 23]. Subtour 

elimination constraints and customer visit sequences are also included [14, 19]. Dynamic models present real-

time constraints, such as request insertion and order assignment [13, 20]. Environmental and energy aspects 

include constraints on carbon emissions, slope, speed, and acceleration, degradation of fresh product quality, as 

well as cooling systems and fuel consumption [12, 16]. Finally, the constraints of multiskilled labor, service 

queues at depots, and restrictions on electric vehicle charging stations are also considered [23, 25].  

 

Methods 

 
This study adopts a quantitative approach with a simulation-based experimental design to develop and analyze 

the optimization model of the Heterogeneous Vehicle Routing Problem with Time Windows and Multi-Trips 

(HVRPTWMT). The quantitative approach was chosen because the research goal is to minimize mileage, which 

requires the analysis of measured data and the use of precise mathematical models. Simulation-based 

experimental design is applied to build and test optimization models in a controlled environment, which 

systematically evaluates the model's performance in finding optimal route solutions and analyzing its 

sensitivity to various key parameters. 

 

The developed HVRPTWMT model will be solved using analytical methods with the help of the LINGO 21.0.26 

application. This analytical method is crucial because it guarantees optimal solutions (global optimum), which 

aligns with the research goal of accurately minimizing mileage. The data used as the input model is historical 

data on the delivery of fresh products from a company on April 10, 2025, which was chosen because it has the 

highest delivery volume and is relevant to the limitations of the research problem. Using spreadsheet 

applications will also help in processing raw data from observations, interviews, and literature studies. In 

contrast, Google Maps is used to determine the geographic coordinate points of customers. 

 

The process began with the identification of specific delivery route problems at a company, which was conducted 

through interviews and observations, identifying relevant VRP types, and performing a comprehensive 

literature search to build a theoretical foundation. Once the required data is collected, the core stage of the 

research proceeds to creating a VRP model in mathematical formulation, which is then implemented into the 

LINGO application. The model that has been made will undergo an iterative verification and validation process. 

The model must be error-free (non-infeasible) and capable of generating a logical solution through sensitivity 

testing before being declared ready to obtain the optimal solution. The result of the model solution will then be 

compared with the results of the real system of a company, which will evaluate the efficiency and potential 

improvements that the model can offer, which will ultimately be the basis for formulating conclusions and 

recommendations. 
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VRP Model 

 

To formulate an accurate mathematical model, this study uses a series of standard notations that represent 

various key elements in the route optimization problem.  

 
𝑖, 𝑗, 𝑘 : Index for node or customer (𝑖 is the origin node, 𝑗 is the destination node, and 𝑘 is the transit 

node) 
𝑣 : Index for vehicles  
𝑁 : Total customers 
𝑀 : Total vehicles 
𝐻 : Total Trips 

𝑥𝑖𝑗𝑣 : Decision variable for trips from customer 𝑖 to customer 𝑗 on vehicle 𝑣 (value 1 in case of trip 

and 0 if otherwise) 

𝑑𝑖𝑗 : Distance from customer 𝑖 to customer 𝑗 

𝑞𝑖 : Customer's request 𝑖 
𝑄𝑣 : Vehicle capacity 𝑣 

𝑢𝑖𝑣 : Total demand to customers 𝑖 on vehicle 𝑣  

𝑣 : Vehicle speed 
𝑇𝑢 : Unloading time is 0.08 min/kg 

𝑡𝑖𝑗 : Travel time from customer 𝑖 to customer 𝑗 

𝑇𝑖𝑣 : Arrival time of vehicle 𝑣 at customer 𝑖 
𝑇𝑣𝑖 : Time to visit or unload goods to the customer at location 𝑖 (𝑞𝑖 . 𝑇𝑢) 

𝑇𝑏𝑎𝑐𝑘 : Vehicle return time to the depot 
𝑎 : Initial reception time at the customer's location 
𝑏 : Final acceptance time at the customer's location 

 

These notations are the basis for constructing mathematical model equations and constraints to find optimal 

solutions in determining delivery routes. The VRP model is written as follows: 

 

Objective Function 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑑𝑖𝑗

𝑀

𝑣

𝑁

𝑗

𝑁

𝑖

𝑥𝑖𝑗𝑣 
( 1 ) 

Equation (1) is the objective function, which mathematically describes the total mileage that must be minimized 

[7]. The objective function is not a cost function because the route cost of a vehicle is the total of the travel time 

(proportional to distance), waiting time, and service time required to visit a set of customers [26]. Distance is a 

key component of the total cost, making it a valid basis for the objective function. 

 

Core VRP Constraints 
𝑥𝑘𝑘𝑣 ≤ 0, ∀𝑣, 𝑘 ( 2 ) 

Equation (2) states that vehicles do not travel to the same location on a given route [5], [27]. 

∑ ∑ 𝑥𝑖𝑘𝑣

𝑀

𝑣

𝑁

𝑖

= 1, ∀𝑘 
( 3 ) 

∑ ∑ 𝑥𝑘𝑗𝑣

𝑀

𝑣

𝑁

𝑗

= 1, ∀𝑘 
( 4 ) 

Equations (3) and (4) ensure that each customer is visited and departed from by exactly one vehicle [4]. 

∑ 𝑥𝑖𝑘𝑣

𝑁

𝑖

− ∑ 𝑥𝑘𝑗𝑣

𝑁

𝑗

= 0, ∀𝑘, 𝑣 ∈ 𝑁 
( 5 ) 

Equation (5) guarantees the continuity of the routing process by ensuring that the number of vehicles arriving 

at a customer location is equal to the number of vehicles departing or after arriving at the customer, the vehicle 

will return to the next customer [28]. 

Subtour Elimination and Capacity Constraints 

Equations (6) to (8) are formulations that combine subtour elimination and capacity management. 
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𝑢𝑗𝑣 ≥ 𝑢𝑖𝑣 + 𝑞𝑗𝑥𝑖𝑗𝑣 − 𝑞𝑖𝑥𝑗𝑖𝑣 + (𝑞𝑗 − 𝑄𝑣)(1 − 𝑥𝑖𝑗𝑣 − 𝑥𝑗𝑖𝑣), ∀𝑣, 𝑖, 𝑗 ( 6 ) 

 

Equation (6) is an extended version of the Miller-Tucker-Zemlin (MTZ) formulation. This equation relates the 

visit sequence to the vehicle's load. If a vehicle v moves from location 𝑖 to location 𝑗 (𝑥𝑗𝑖𝑣=1), this equation ensures 

that the cumulative load at location 𝑗 (𝑢𝑗𝑣) is the cumulative load at location 𝑖 (𝑢𝑖𝑣) plus the demand at location 

j (𝑞𝑗). This effectively prevents disconnected routes while simultaneously tracking vehicle loads [27]. 

𝑢𝑗𝑣 ≤ 𝑄𝑣 − (𝑄𝑣 − 𝑞𝑘)𝑥1𝑗𝑣 , ∀𝑣, 𝑗, 𝑘 ( 7 ) 

𝑢𝑗𝑣 ≥ 𝑄𝑣 + ∑ 𝑞𝑖

𝑁

𝑖≠1

𝑥𝑖𝑗𝑣 , ∀𝑣, 𝑗 
( 8 ) 

Equations (7) and (8) ensure that the cumulative load never exceeds the maximum vehicle capacity (𝑄𝑣), thus 

guaranteeing a valid route [27]. 

 

Decision variable 

𝑥𝑖𝑗𝑣 ∈ {0, 1} ( 9 ) 

Equation (9) states that the decision variable 𝑥𝑖𝑗𝑣 is binary [29]. 

 

Time Window Constraints  

 

The time window is an essential constraint in this model because every customer of a company has a specific 

operating time or receipt time. This means that each vehicle must arrive and serve the customer within a 

predetermined time frame, ensuring adherence to the receipt schedule. 
𝑇𝑖𝑣 + (𝑇𝑣𝑖 + 𝑡𝑖𝑘)𝑥𝑖𝑘𝑣 − 𝑏𝑖(1 − 𝑥𝑖𝑘𝑣) ≤ 𝑇𝑘𝑣 , ∀𝑣, 𝑗, 𝑖, 𝑘 ( 10 ) 

Equation (10) calculates the arrival time of a vehicle at a customer location based on its arrival time at the 

previous location plus travel and service time [27]. 
𝑎𝑘 ≤ 𝑇𝑘𝑣 ≤ 𝑏𝑘 , ∀𝑣, 𝑘 ( 11 ) 

Equation (11) ensures that a vehicle's arrival time at a customer's location must be within the customer's 

predefined time window [27]. 

𝑇𝑘𝑣 + (𝑇𝑣𝑘 + 𝑡𝑘1)𝑥𝑘1𝑣 ≤ 𝑇𝑏𝑎𝑐𝑘/ ⌈
∑ 𝑞𝑘

𝑁
𝑘≠1

∑ 𝑄𝑣 . 𝑁𝑀
𝑣

⌉ , ∀𝑣, 𝑘 
( 12 ) 

Equation (12) ensures the vehicle does not exceed the set total trip time limit [28]. 

 

Additional Constraints 

 

In addition to the restrictions already mentioned, several additional constraints are implemented to ensure the 

adequacy of vehicles and prevent trips exceeding the specified trip limits. 

⌈
∑ 𝑞𝑘

𝑁
𝑘≠1

∑ 𝑄𝑣 . 𝑁𝑀
𝑣

⌉ ≤ 𝐻 
( 13 ) 

Equation (13) ensures that the total number of trips formed does not exceed the total number of available trips 

and makes the first trip take precedence. 

∑ 𝑥1𝑗𝑣

𝑁

𝑗

≤ 𝑀. ⌈
∑ 𝑞𝑘

𝑁
𝑘≠1

∑ 𝑄𝑣 . 𝑁𝑀
𝑣

⌉ , ∀𝑣 
( 14 ) 

Equation (14) ensures that the total number of trips formed does not exceed the total number of vehicles and 

total available trips. 

∑ ∑ 𝑞𝑖𝑥𝑖𝑗𝑣

𝑁

𝑗≠𝑖

𝑁

𝑖≠𝑗

≤ 𝑄𝑣 ⌈
∑ 𝑞𝑗

𝑁
𝑘≠1

∑ 𝑄𝑣 . 𝑁𝑀
𝑣

⌉ , ∀𝑣 
( 15 ) 

Equation (15) provides that the vehicle's capacity is sufficient to fulfill all customer demands. 

 

Geographical and Auxiliary Constraints 

𝑡𝑖𝑗 = 𝑣. 𝑑𝑖𝑗 , ∀𝑗, 𝑖 ( 16 ) 

Equations (16) define the travel time (𝑡𝑖𝑗) from location 𝑖 to location 𝑗 as the distance (𝑑𝑖𝑗) divided by the average 

vehicle speed (𝑣). This value is crucial for the time window constraints in Equation (10). Note: The original 
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formulation (𝑡𝑖𝑗 = 𝑣. 𝑑𝑖𝑗 , ∀𝑗, 𝑖), is a typographical error and has been corrected in the final model to reflect the 

standard physical relationship.  

 

𝑑𝑖𝑗 = 𝑅. 𝑐𝑜𝑠−1 (𝑠𝑖𝑛 (
𝜋

180𝑜
. 𝑙𝑎𝑡 𝑖) . 𝑠𝑖𝑛 (

𝜋

180𝑜
. 𝑙𝑎𝑡 𝑗))

+ 𝑐𝑜𝑠 (
𝜋

180𝑜
. 𝑙𝑎𝑡 𝑖) . 𝑐𝑜𝑠 (

𝜋

180𝑜
. 𝑙𝑎𝑡 𝑗) . 𝑐𝑜𝑠(|𝑙𝑜𝑛 𝑖 − 𝑙𝑜𝑛 𝑗|) 

( 17 ) 

 

Equation (17) calculates the distance between two points on the globe. This is the Haversine formula, used to 

precisely calculate the shortest distance (𝑑𝑖𝑗) between two points on the surface of a sphere (the "Great-Circle" 

distance), given their latitude and longitude coordinates. This equation grounds the model in real-world 

geographical data, removing the need for a pre-calculated distance matrix [30]. 
𝑇𝑣𝑖 = 𝑞𝑖 . 𝑇𝑢 ( 18 ) 

Equation 18 calculates the total visit time (𝑇𝑣𝑖) required at each location 𝑖. It is determined by multiplying the 

customer's demand (𝑞𝑖) by a predefined time unit per load, 𝑇𝑢 (e.g., minutes per kilogram). This value is then 

used in Equation (10) to accurately compute the total time spent at each customer’s location. 

 

Results and Discussions 
 

This section presents the results of the analysis and in-depth discussion related to the optimization research of 

delivery routes at a company. Starting with an explanation of the existing delivery conditions, it continued with 

the formulation of the Vehicle Routing Problem (VRP) model used, model validation, and the results of route 

optimization obtained. Finally, a comparison was made between the results of the model and the real system. 

 

Delivery Conditions 

 

The company's return report from April 2-19, 2025, indicates that shipping delays were responsible for 3% of 

returns, amounting to 5.9 tons out of 197 tons of total shipments. These delays are primarily caused by the 

company's reliance on manual route planning, which is a complex process due to strict, rule-based constraints. 

These operational rules, such as time windows and heterogeneous fleets, are difficult to manage manually but 

can be precisely formulated as measurable constraints in an optimization model to find a more efficient solution. 

 

A company implements several key shipping policies to ensure efficiency and punctuality. There are two daily 

delivery times, namely morning and noon, provided all vehicles must return no later than 18.00. Departure 

times from the factory are flexible and adapted to the given route, and drivers can swap vehicles if needed. It is 

also important to note the separation of vehicles for fresh (3 L300, 2 CDE) and frozen (6 CDE, 1 CDD) products 

due to the temperature difference required. In addition, all prepared goods must be delivered according to the 

schedule, and customer receipt of goods must occur within the agreed time. Finally, morning delivery is 

prioritized due to the product’s short lifespan to ensure that goods reach customers faster. 

 

Model Parameter 

 

The fleet used in this study can be categorized as heterogeneous as it consists of vehicles with different 

characteristics, namely their carrying capacity (See Table 1). Specifically, this fleet comprises a total of five 

vehicles divided into two groups: three vehicles with a capacity of 1500 (with license plate numbers S 8932 SB, 

S 8247 SD, and S 9079 SC) and two vehicles with a capacity of 2500 (with license plate numbers S 9573 SB and 

S 8298 SD). This diversity in capacity is a crucial factor in VRP modeling, as route and load allocation decisions 

must be considered the most suitable vehicle for each task.  
 

Table 1. Vehicles’ parameter 

Capacity Number of vehicles Police number 

1500 3 S 8932 SB 

S 8247 SD 

S 9079 SC 

2500 2 S 9573 SB 

S 8298 SD 

 

Table 2 exhibits the model’s time and speed parameters. Vehicle speed (TMPM) is 0.83 km/min, unloading time 

(TMUL) is 0.08 min/kg (based on the interview with the expedition head, the full unloading time for a 2500 kg 
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vehicle is about 2 hours 20 minutes, which is converted to 0.08 minutes/kg), and return to depot time (TBACK) 

is 1080 minutes. The maximum number of trips (TRIP) is 2. These parameters are a crucial basis in building 

and optimizing the delivery route model for a company. 

 
Table 2. Setting parameter 

Parameter Unit Value 

Vehicle Speed (TMPM) km/min 0,83  

Unloading time (TMUL) min/kg 0,08  

Comeback time (TBACK) min 1080  

Trip - 2 

 
The fleet will serve 10 fresh chicken customers from a depot that acts as the point of origin and return (Table 

3). Each customer is identified by a unique Customer ID and has demand data listed in the Total column. The 

location of each customer is specified by its latitude and longitude. The most critical information for VRP 

modeling is the time window, which sets the earliest (TME) and latest (TML) arrival times at each customer’s 

location, ensuring deliveries are completed on schedule. 

 
Table 3. Fresh chicken customers’ parameters  

Customer ID  Total Latitude Longitude TME TML 

DEPOT 0.00 -7.41687100 112.40060400 0 9,999 

CEBA000806 101.40 -7.25787250 112.64610330 420 1,020 

CEBA000736 113.80 -7.19538050 111.94815300 300 900 

CEBA000568 118.40 -7.30256520 112.70383820 300 960 

CEBA001517 484.80 -7.94073320 112.62360250 360 960 

CEBA000663 513.40 -7.33279250 112.71798040 300 1,020 

CEBA000380 514.00 -7.48919720 112.44805300 360 1,020 

CEBA000108 571.50 -8.12929270 112.21536400 420 1,020 

CEBA001468 695.00 -7.87730030 112.68805390 300 960 

CEBA000180 762.70 -7.54546360 112.22906300 420 900 

CEBA001108 1,004.90 -7.71850730 112.99892350 360 900 

CEBA000380 1,500.00 -7.48919720 112.44805300 360 1,020 

CEBA001468 1,500.00 -7.87730030 112.68805390 300 960 

CEBA001468 1,500.00 -7.87730030 112.68805390 300 960 

CEBA001468 1,500.00 -7.87730030 112.68805390 300 960 

 

Results 

 

Figure 1 shows visual map that represents the optimized routes operate from a main depot to serve customers 

in various locations. The orange-colored areas in the image represent customer clusters that are grouped into 

the same delivery route. 

 

 
Figure 1. Delivery route maps 

 

The minimum distance is 774.45 km. which is divided into six delivery routes. These routes utilize two vehicle 

capacities: 1500 kg and 2500 kg. Route 1 (capacity 1500 kg) starts from the DEPOT to the CEBA000736 

(LOADCUM 113.8), then to CEBA000180 (LOADCUM 876.5), before returning to the DEPOT. Route 2 
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(capacity 1500 kg) is a short route from DEPOT to CEBA000380 (LOADCUM 1500.0) and directly back to 

DEPOT. 

 

For larger capacity vehicles (2500 kg), Route 3 serves four customers: from the DEPOT to CEBA001108 

(LOADCUM 1004.9), continuing to the CEBA000663 (LOADCUM 1518.3), to the CEBA000568 (LOADCUM 

1636.7), and ending at the CEBA000806 (LOADCUM 1738.1) before returning to the DEPOT. Route 4 moves 

from DEPOT to CEBA001468 (LOADCUM 1500.0), then to CEBA000108 (LOADCUM 2071.5), and back to 

DEPOT. Route 5 starts from the DEPOT to the CEBA001468 (LOADCUM 1500.0), then to the CEBA001517 

(LOADCUM 1984.8), to the CEBA000380 (LOADCUM 2498.8), and back to the DEPOT. Finally, Route 6 

(capacity 2500 kg) involves traveling from DEPOT to CEBA001468 (LOADCUM 1500.0) and then back to the 

CEBA001468 (LOADCUM 2195.0), which may indicate repeated visits or separate deliveries to the exact 

location, before returning to the DEPOT.  

 

Model Comparison with Real Systems 
 

Table 4 shows the delivery distance carried out by a company on April 10, 2025. The total distance traveled by 

all vehicles is 694.39 km. The figure of 694.39 is lower than the model results due to the improper use of vehicles, 

specifically 6000 kg vehicles used to transport customer requests CEBA001468, where the demand is 5195, 

resulting in no split of these customers. Using this inappropriate vehicle does not occur in the model because 

the model refers to the rules set beforehand. Overall, the model’s results are considered superior to the real 

systems due to its strict adherence to all operational rules. Although the total distance is higher than the real 

system, the results model can still be considered globally optimal due to the use of vehicles not included in the 

designated model. 
 

Table 4. Total Distance and Quantity 

Vehicle police’ number Departure Arrival Distance Qty 

S 8247 SD DEPOT CEBA001517 63,22 484,80 

CEBA001517 DEPOT 63,22 0,00 

Total S 8247 SD 126,44 484,80 

S 8932 SB DEPOT CEBA000568 35,77 118,40 

CEBA000568 CEBA000663 3,71 631,80 

CEBA000663 CEBA000806 11,50 733,20 

CEBA000806 DEPOT 32,34 0,00 

Total S 8932 SB 83,32 733,20 

S 9079 SC DEPOT CEBA000380 9,59 2.014,00 

CEBA000380 DEPOT 9,59 0,00 

Total S 9079 SC 19,18 2.014,00 

S 8298 SD DEPOT CEBA000180 23,71 762,70 

CEBA000180 CEBA000736 49,75 876,50 

CEBA000736 DEPOT 55,65 0,00 

Total S 8298 SD 129,11 876,50 

S 9573 SB DEPOT CEBA000108 81,80 571,50 

CEBA000108 DEPOT 81,80 0 

Total S 9573 SB 163,60 571,50 

S 9818 SB DEPOT CEBA001108 73,99 1,004,90 

CEBA001108 CEBA001468 38,53 6.199,90 

CEBA001468 DEPOT 60,21 0,00 

Total S 9818 SB 172,73 6.199,90 

Total 694,38 10.879,90 

 

Model Verification and Validation 

 

In this research, a sensitivity analysis was conducted to evaluate the stability and robustness of the optimal 

solution for the Vehicle Routing Problem (VRP) when key parameters were changed to reflect dynamic real-

world conditions. The main objective was to assess the impact of four primary factors: vehicle composition and 

capacity, customer demand volume, delivery deadlines, and customer time windows. By systematically 

manipulating these variables, the sensitivity analysis provides a comprehensive understanding of the model's 
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flexibility and efficiency. This approach helps identify the best fleet configurations and operational strategies 

that are not only optimal for a single scenario but also adaptable to various unexpected changes in logistics. 

 
Table 5. Sensitivity analysis by changing the composition and capacity of the vehicle 

Testing Basis 1 2 3 4 

Number of customers 50 50 50 50 10 

Average customer demand  100 100 100 100 100 

Number of vehicles 1 1 1 1 1 1 

Average vehicle capacity 1 10000 5000 2500 3000 1500 

Number of vehicles 2       1 1 

Average vehicle capacity 2       2000 1000 

Number of vehicle routes 1 1 2 3 2 3 

Number of vehicle routes 2        1 

Total routes 1 2 3 2 4 

Total distance 1100 1120 1140 1120 1160 

 

Table 5 illustrates how fleet capacity and composition significantly influence the number of trips, routes, and 

total mileage. The number of customers and their demand remained unchanged throughout the study, with no 

restrictions on trips, time windows, or return times. In this sensitivity test, 50 customers were analyzed, each 

with a demand of 100 kg. In Tests 1 and 2, a reduction in the capacity of the first type of vehicle led to a 

substantial increase in the number of trips, routes, and total distances. More trips were necessary to transport 

the same road, which also contributed to increased total distance due to the repeated round-trip calculations 

from the depot. Conversely, Tests 3 and 4, which involved the second type of vehicle, demonstrated a decrease 

in total trips and routes. This indicated that enhancing the fleet's overall capacity resulted in improved 

efficiency. In Test 3, only the first type of vehicle was used, which minimized distance. However, in Test 4, an 

even distribution of demand between the two types of vehicles proved to be optimal for utilizing fleet capacity. 

As more routes were formed, the total distance increased due to the necessity of repeated calculations for the 

distance to and from the depot, as more routes and trips were created.  

 

  
Figure 2. Test model sensitivity by changing the number of requests 

 
Figure 2 presents two graphs that visualize the relationship between the number of customers and the average 

demand per customer relative to total distance travel, demonstrating that both factors contribute to the increase 

in distance travel. The graph on the left illustrates that the number of customers has a significant impact, 

increasing the number of customers from 25 to 50 results in a dramatic increase in the distance traveled, from 

560 km to 1200 km. This indicates that serving more customers requires significantly longer routes. On the 

other hand, the graph on the right shows that the average demand per customer also affects the distance, albeit 

with a more minor impact; increasing the demand from 100 kg to 250 kg only results in a slight increase in 

distance from 560 km to 640 km. Overall, these two graphs clearly illustrate that the more customers served 

and the greater their demand, the longer the distance required. This sensitivity test shows that the model 

created is quite responsive to changes in demand and the number of customers. 

 

Table 6 shows that changes in delivery deadlines (TBACKs) significantly affect the number of trips and total 

mileage, although the number of customers and total demand remain constant. When TBACK was capped at 

500 in Test 1, operations were unaffected compared to base conditions, with a huge time constraint. This 

indicates that the limitation was still loose enough not to affect operations with the current fleet configurations. 
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However, the drastic drop in TBACK to 200 in Test 2 significantly increased the number of trips and total 

distance, highlighting that strict time constraints forced more trips due to suboptimal loadouts, triggering the 

formation of multiple trips or routes. In contrast, the easing of TBACK to 300 in Test 3 and 400 in Test 4 

gradually reduced the number of trips and total distance, returning to close baseline conditions. The logical 

implication of this test is that overly strict delivery time limits can increase mileage through increased travel 

numbers and potentially lower vehicle and route utilization efficiency. In contrast, more realistic and flexible 

time constraints enable better route planning and maximum loading, ultimately contributing to more efficient 

operations with reduced travel numbers and mileage.  

 
Table 6. Sensitivity analysis by changing the delivery deadline 

Testing Basis 1 2 3 4 

Number of customers 50 50 50 50 50 

Average customer demand  100 100 100 100 100 

Delivery time (TBACK) 9999 2000 200 300 400 

Number of vehicle routes 1 2 2 5 4 2 

Number of vehicle routes 2           

Total routes 2 2 5 4 2 

Total distance 1140 1140 300 280 240 

 
Table 7. Sensitivity analysis by changing the customer’s Windows Time 

Testing Basis 1 2 3 4 

Number of customers 10 10 10 10 10 

Average customer demand  100 100 100 100 100 

Number of customers whose time was changed  0 5 4 7 7 

TME 0 360 360 360 300 

TML 9999 420 420 420 720 

Number of vehicle routes 1 2 3 2 4 2 

Number of vehicle routes 2           

Total routes 2 3 2 4 2 

Total distance 240 260 240 280 240 

 

Table 7 shows that the customer delivery time window (Time Windows), which is reflected in the number of 

customers with time constraints, and the relaxation of their waiting time ranges, directly affects operational 

efficiency in terms of the number of trips and total mileage. However, the volume of requests and the number 

of customers remain stable. Test 1 revealed that the time constraints of TME (initial acceptance) and TML (final 

acceptance time) for some customers (5 customers changed TME to 360 and TML to 420) began to impact route 

planning, increasing the number of trips and mileage. Testing 2 was conducted with fewer customers whose 

Time Windows were changed, resulting in a reduction in the number of trips/routes and mileage. An increase 

in the number of trips and mileage was again seen in Test 3 as the number of customers with changing time 

constraints increased. In test 4, the importance of Time Windows’ flexibility was highlighted; with a much 

broader waiting timeframe, the system achieved the same results as the baseline conditions, regarding the 

number of customers and the distance traveled. The logical implication of this data is that the Time Windows 

relaxation provides crucial flexibility for the route. Optimization, at the same time, the increasing number of 

customers with strict time constraints significantly increases planning complexity and potentially increases or 

decreases mileage.  

 

The sensitivity test results show a responsive and logical model to vehicle quantity/capacity changes, customer 

demand, delivery deadline, and customer time window. This consistency proves a validated and reliable model 

for analysis, particularly in determining the optimal number of vehicles. 

 

Conclusion 

 
This research successfully developed a model for the Heterogeneous Vehicle Routing Problem with Time 

Windows and Multi-Trips (HVRPTWMT). The model aims to provide a globally optimal solution that minimizes 

delivery mileage for a company. By utilizing the Lingo solver, we were able to determine a minimum distance 

of 774.45 km across six delivery routes, all while complying with the company's operational constraints. An 

extensive sensitivity analysis demonstrated that the model is highly responsive to changes in important 

parameters, such as vehicle capacity, customer demand, and time window constraints. Notably, increases in 
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capacity or the relaxation of time restrictions significantly enhanced route efficiency. This validates the model's 

logic and shows the robustness of its solutions. 

 

The most significant finding of this study is the comparative analysis between the optimal solution and the 

company’s existing operational data. While the company’s system records a lower distance of 694.39 km, our 

analysis revealed that this seemingly shorter distance was achieved by violating a key delivery rule—

specifically, using a large-capacity vehicle without a split load for a particular customer. This indicates that the 

existing operational system prioritizes efficiency over adherence to rules, resulting in a distance that, although 

appearing shorter, compromises compliance. Consequently, the solution produced by our model is considered 

superior because it adheres strictly to all operational constraints, even though it results in a slightly longer 

distance.  

 

This finding validates our model's capability to identify a globally optimal solution and underscores the 

considerable potential for a company to enhance efficiency through disciplined adherence to logistics 

regulations. Our research demonstrates that mathematical optimization can serve as an essential tool for 

identifying and addressing inefficient or non-compliant operational practices. 
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