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Abstract: This paper focuses on developing a Multi-Task Simultaneous Supervision Dual 

Resource-Constrained Scheduling (MTSSDRC) system that considers differences in skill between 

operators, aiming to minimize makespan and balance operator workload. Workload balance is 

calculated using the Workload Smoothness Index (WSI). The mathematical model developed uses 

three techniques: Mixed-Integer Linear Programming (MILP), Mixed-Integer Quadratic Programming 

(MIQP), and Mixed-Integer Quadratically Constrained Programming (MIQCP). These techniques 

can handle scheduling cases on a small to medium scale. Results from MILP focus on minimizing 

makespan, with an additional constraint for calculating the WSI. MIQP focuses on workload 

balance so that the WSI value becomes an objective function. It also adds a constraint for the 

allowable makespan value. The result from MIQP shows that the WSI value is lower than in 

MILP, and the makespan values are equal to the MILP makespan value. Next, MIQCP aims to 

minimize makespan with a constraint for the allowable WSI value. The MIQCP model produces a 

makespan value adjusted to a WSI value close to zero. Finally, further analysis is presented 

regarding the influence of differences in operator skills based on the results of the three models. 

Based on these models, operators with better skills will be assigned more frequently than others. 

 

Keywords: MTSSDRC scheduling, identical parallel machines, workload smoothness index, 

makespan. 

 

 

Introduction 
 

Aircraft manufacturing is a complex industrial sector that requires high precision in each aspect of its 

operations. Production scheduling is an essential component that determines efficiency in this industry. This 

industry involves multiple production processes that must be coordinated within an appropriate timeframe. To 

increase worker productivity, some companies assign each operator to supervise two or three semi-automatic 

machines simultaneously. This practice aims to increase operator activity and reduce unproductive time. 

Moreover, many factors contribute to the increasing complexity of scheduling, including machine and human 

factors and differences in operator skills. Variations in operator skills lead to differences in job completion times 

between operators performing the same job [1], [2].  

 

These conditions are particularly relevant in an aircraft manufacturer using Cincinnati Milacron Double 

Gantry All Purpose (CM-DGAP) and Cincinnati Milacron Double Gantry Aluminum (CM-DGAL) machines. 

These machines produce aluminum components on the shop floor and are semi-automatic, capable of 

performing several activities (such as machining) while other tasks still require operator assistance [3]. The 

machines are arranged in parallel and exhibit identical performance characteristics (e.g., capability, speed, and 

capacity). Operators on the shop floor must be capable of using all machines, though their skill levels naturally 

vary, leading to differences in job completion times for activities like setup and unloading. 

 

Most scheduling problems consider only machines as constraints in schedule planning. However, operators can 

also be constrained in natural systems due to their availability and skill levels [4]. Therefore, machines and 

operators become priority constraints in planning the schedule, known as dual resource constraints (DRC) [5], 

[6].  
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In DRC scenarios, operators can use all machines on the shop floor [5], [7]. Typically, the number of available 

operators is less than the number of available machines [8], [9]. This constraint is addressed in research by 

Agnetis et al. [10], [11] and Mencía et al. [12], focusing on minimizing makespan, and by Berti et al. [13] and 

Shahvari & Logendran [4], focusing on minimizing production costs. According to Zouba et al. [14], operators 

must supervise machines simultaneously because there are fewer operators than machines. Hence, operators 

can move from one machine to another to supervise multiple jobs simultaneously. Akbar and Irohara [15] 

studied simultaneous supervision, where operators can simultaneously operate multiple machines with two 

activity elements (setup and unloading). This scheduling research is the Multi-Task Simultaneous Supervision 

Dual Resource-Constrained (MTSSDRC) Scheduling Problem. Assigning operators to multiple machines 

simultaneously can increase machine waiting and operator idle time, affecting the makespan [15]–[19]. Therefore, 

minimizing makespan is one of the objectives of this research. 

 

This research aims to produce results applicable to natural manufacturing environments considering human 

factors. The human factor in the MTSSDRC system is viewed from a skill perspective, a numeric value assessing 

each operator's skill level to meet quality standards or specific productivity targets [1]. Biskup [20] was the first 

researcher to study the effect of skill levels on scheduling problems. Operators with varying knowledge absorption 

processes may require retraining or relearning [21].  

 

Research by Kuo and Yang [22] considers differences in operator skill levels as constraints to minimize flow 

time in a machine. Costa et al. [1] and Vallada & Ruiz [2] also consider operator skill levels affecting setup time 

differences for a job performed by different operators. Inappropriate scheduling can create a workload imbalance 

among operators, leading to dissatisfaction and jealousy. Achieving operator workload balance is crucial to 

prevent such feelings in production schedule planning [19]. The goal is for the planned production schedule to 

provide each operator with a balanced workload. 

 

In this paper, we develop a new MTSSDRC scheduling model that considers differences in operator skill levels. 

The references for this paper come from various researchers and shop floor conditions. We will develop the 

mathematical model using mixed-integer linear programming (MILP), mixed-integer quadratic programming 

(MIQP), and mixed-integer quadratically constrained programming (MIQCP), ensuring the model runs with 

Gurobi software. The goal is to create a mathematical model to minimize makespan and balance operator 

workload. 

 

Methods 
 

Literature Review 

 

Grahan et al. [23] have classified scheduling in the manufacturing environment for decades. This classification 

remains relevant for identifying the nature of scheduling problems. The scheduling classification is based on a 

triplet 𝛼|𝛽|𝛾: machine environment (𝛼 field), processing characteristics and constraints (𝛽 field), and objective 

function (𝛾 field). The 𝛼 𝑓𝑖𝑒𝑙𝑑 includes Single Machine (𝐼), Identical Machines in Parallel (𝑃𝑚), Machines in 

Parallel with Different Speeds (𝑄𝑚), Unrelated Machines in Parallel (𝑅𝑚), Flow Shop (𝐹𝑚), Job Shop (𝐽𝑚), and 

Flexible Job Shop (𝐹𝐽𝑒) (Pinedo, 2012).  

 

Scheduling with parallel machines involves planning n tasks that work independently on m parallel machines, 

considering specific constraints to optimize performance [24]–[27]. According to Biskup et al. [28], the parallel 

system allocates tasks to simultaneously operating machines. Each task requires one process on one of the m 

available machines [29. When all machines have the exact specifications and are arranged in parallel, they are 

known as Identical Parallel Machines [30]. This environment includes multiple machines with identical 

performances [30]. The basic model for an identical parallel machine system involves each job requiring one 

task or specific activity, which can be processed on any machine [31]. 

 

Processing characteristics and constraints in the 𝛽 field include release dates, preemptions, sequence-dependent 

setup times, batch processing, permutation, and recirculation [31]. Constraints include the available resources, 

such as tools, machines, and operators. Often, the number of operators is not equal to the number of machines, 

creating a constraint when planning the production schedule. Machines and operators as resources can be 

potential constraints in solving scheduling problems, known as Dual Resource Constraint Scheduling Problems 

(DRCSP) [6]. DRCSP research details processing characteristics and constraints (𝛽 field), including operator job 

activities where operators only handle setup and unloading without performing the machining process. 
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Researchers have focused on setup, processing, and unloading activities. Agnetis et al. [10], [11], Li et al. [9], 

and Mencia [12] consider processing time (including setup and unloading time) to develop scheduling models. 

Costa et al. (2013), Gao & Pan (2016), Munoz et al. (2022), and Zhang et al. (2021)  developed scheduling models 

considering setup time as a constraint.  

 

DRCSP also considers differences in operator skill levels. Operators have varying skill levels, resulting in 

different completion times for setup and unloading activities [1], [2]. Careful production scheduling is necessary 

to prevent imbalances in operator assignments, which can lead to dissatisfaction and jealousy [19]. 

 

Research on DRCSP is expanding with the consideration of simultaneous supervision. Zouba et al. [14] studied 

m identical parallel machines with w operators to minimize makespan, where w < m. Thus, each operator must 

supervise multiple machines simultaneously. This research was further developed by Akbar and Irohara [15], 

considering an advanced optimization method: multi-task simultaneous supervision dual resource-constrained 

(MTSSDRC) scheduling. MTSSDRC involves machine assignment, operator allocation, and job sequencing [17]. 

Setup and unloading must be scheduled for the operator, who can leave the machine while machining is in 

progress. Assigning an operator to multiple machines alternately can increase waiting and idle time, thus 

increasing makespan [15]. Therefore, minimizing makespan becomes an objective function to reduce idle and 

waiting times in MTSSDRC scheduling [15]–[19]. 

 

The objective function (𝛾 field) pertains to the study and theory development of scheduling for various 

applications [31]. It includes minimizing flow time, total tardiness, completion time, makespan, and production 

cost  [31]. Minimizing makespan is a popular objective function in scheduling research due to its importance in 

assessing the effectiveness of solutions. Studies by Akbar & Irohara [17], Arroyo & Leung [35], Costa et al. [1], 

Peng et al. [36], Shahvari & Logendran [4] and Vallada & Ruiz  [2] have used makespan as an objective function. 

In DRC scheduling, operator workload balance is also considered a secondary objective function, as seen in 

research by Akbar and Irohara (2018a, 2020b). 

 

Maintaining operator workload balance is crucial to preventing jealousy over assigned workloads. Workload 

imbalances can occur when operator skills and scheduling are not appropriately matched [18], [19]. Based on 

the discussed scheduling characteristics, previous research is summarized, forming the literature basis for this 

study's development. 

 
Table 1. Papers on MTSSDRC Scheduling 

Literature 

Problem characteristic 

𝛼 field 

DRC Type 𝛾 Field 

w vs. m 
Simultaneous 

Supervision 
Task Type Moving 

Operator Skill 

Variance 

 

Hu [24] 𝑃𝑚 𝑤 > 𝑚 - - - - Total Tardines 

Hu [25] 𝑃𝑚 𝑤 < 𝑚 - - - - Total Flow Time 

Agnetis et al. [10] 𝐽𝑚 𝑤 < 𝑚 - - - - Makespan 

Vallada & Ruiz [2] 𝑃𝑚 Any - - - √ Makespan 

Costa et al. [1] 𝑅𝑚 𝑤 < 𝑚 √ Set up - √ Makespan 

Agnetis et al. [11] 𝐽𝑚 𝑤 < 𝑚 - - - - Makespan 

Mencía et al. [12] 𝐽𝑚 𝑤 < 𝑚 - - - - Makespan 

Baptiste et al.[3] 𝑃𝑚 𝑤 < 𝑚 √ 

Loading, set up, 

controlling, 

unloading 

- - Makespan 

Akbar & Irohara 

[15] 
𝑃𝑚 𝑤 < 𝑚 √ 

Set up, 

unloading 
√ - Makespan 

Akbar & Irohara 

[16] 
𝑃𝑚 𝑤 < 𝑚 √ 

Set up, 

unloading 
√ - 

Makespan and operator 

work balance 

This research 
𝑃𝑚 𝑤 < 𝑚 √ 

Set up, 

unloading 
√ √ 

Makespan and operator 

work balance 

 

This research addresses scheduling planning problems for producers using semi-automatic machines. Detailed 

operator activities include setup, unloading, and moving to create schedules that minimize makespan and 

balance the operator workload. The MTSSDRC study, considering differences in operator skill levels, can be 

applied in natural systems. 
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Problem Statement 

 

Cincinnati Milacron Double Gantry All Purpose (CM-DGAP) and Cincinnati Milacron Double Gantry 

Aluminum (CM-DGAL) are crucial machines for cutting and shaping aircraft components, such as aluminum 

rear spars, with high precision. These machines have the same capability and speed in the production process 

and are used by operators in fewer numbers than the machines available. Furthermore, each operator possesses 

different skill levels, leading to variations in activity completion times. For example, operators 1 and 2 have 

different times for setting up the same job. 

 

This paper refers to research by Akbar & Irohara [17], assigning a set 𝐼 = (𝑖1, 𝑖2, … , 𝑖𝑚) of m semi-automatic 

parallel machines to process a set 𝐽 = (𝑗1, 𝑗2, … , 𝑗𝑛)  of n jobs controlled by a set 𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑤) of w 

operators, with w < m condition. Each job requires one machine to complete setup, machining, and unloading 

sequentially. No interruptions are allowed during the production process. Each operator is responsible for 

supervising setup and unloading activities. Each operator can perform any required activity for a job; for 

example, operator 1 sets up job 1, and operator 2 unloads job 1. 

 

Each operator has a specific skill level, so the time to complete setup and unloading activities varies among 

operators [1]. The operation time for activity b of job l by operator k can be described as follows: 

 

Where: 

𝑂𝑘𝑏𝑙 = Operation time for activity b of job l performed by operator k 

𝑂𝑏𝑙 = The standard operation time (setup and unloading) needed by the operator during operation 

k  = Skill level coefficient of operator k  

 

The operation time for activity b of job l performed by operator k is modeled as 

Okbl = Obl k  (1) 

  

Obl is the standard time required for a specific activity b job l, and k is the skill level coefficient of operator k [1]. 

An advanced operator has a k value greater than 1. Skill levels are determined through direct observation in 

the industry environment. 

 

The Mathematical Model 

 

1. MILP Model 

The main goal of this research is to develop a mathematical model for MTSSRC scheduling, considering 

differences in operator skill levels. The model uses Mixed-Integer Linear Programming (MILP) to minimize 

makespan. The developed model includes an unloading dummy activity (marked by activity 0), representing the 

operator’s first activity to operate the machine for job 0. This is necessary to ensure the next activity is set up 

for the subsequent machine and job. 

 

Input parameters for MTSSDRC involve time. The operation time is 𝑂𝑘𝑏𝑙. The machining time for job l is pl. 

The moving time for the operator after completing a task from machine g to machine i, is tgi. The objective 

function minimizes the time needed to optimize the completion of a set job, modeled with Eq.2. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 =  𝐶𝑚𝑎𝑥  (2) 

 

We use mathematical model references from Akbar & Irohara [19], who developed the MTSSDRC model, and 

Costa et al. [1], who developed the DRC model considering operator skill levels and conditions on the shop floor. 

Thus, the mathematical model development for MTSSDRC, considering differences in skill levels, is as follows: 

 

Indices 

𝑓, 𝑗, 𝑙  = 0,1,2, … , 𝑛 jobs 

𝑔, ℎ, 𝑖  = 1,2, … ,𝑚 machines 

𝑘, 𝑞  = 1,2, … , 𝑤 workers 

𝑎, 𝑏, 𝑐  = 1, 2 activities (1–setup; 2–unloading) 

 

Parameters 

Pl  = Processing time for job l 

Okbl  = Operation time for activity b job l by operator k  
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Tgi  = Moving time between machine g and machine i 

B  = Big number 
 

Decision variables  

Xkhajibl Binary variable = 1, if the operator performs activity b of job l at machine i after completing activity a 

of job j at machine h. 

Qfl Binary variable = 1, if job l precedes job f on the same machine. 

𝑃𝑙
𝑐 Completion operation time for job l 

𝑂𝑏𝑙
𝑐  Completion operation time for activity b of job l 

𝑇𝑏𝑙
𝑐  Moving completion time before performing activity b of job l 

Cmax Makespan 

NWk Non-waiting time for operator k 

NWmax Non-waiting time of the busiest operator 

 

Mathematical models: 

min f1 = Cmax (3) 

  

Subject to:  

∑ ∑ ∑ ∑ ∑ 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙 = 1 𝑏 = 1,2; 𝑙 = 1, 2, … , 𝑛𝑚
𝑖=1

𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1    (4) 

∑ ∑ ∑ ∑ ∑ 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙   1 𝑎 = 1,2; 𝑗 = 1, 2, … , 𝑛
𝑛
𝑙=1

2
𝑏=1

𝑚
𝑖=1

𝑚
ℎ=1

𝑤
𝑘=1    (5) 

∑ ∑ ∑ ∑ 𝑋𝑘ℎ20𝑖𝑏𝑙   1 𝑘 = 1,2, …𝑤𝑛
𝑙=1

2
𝑏=1

𝑚
𝑖=1

𝑚
ℎ=1    (6) 

∑ ∑ ∑ ∑ 𝑋𝑘ℎ10𝑖𝑏𝑙 = 0𝑛
𝑙=1

2
𝑏=1

𝑚
𝑖=1

𝑚
ℎ=1    (7) 

∑ ∑ ∑ ∑ 𝑋𝑘ℎ𝑎𝑗𝑖1𝑙 − 
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1 ∑ ∑ ∑ ∑ 𝑋𝑞𝑔𝑐𝑓𝑖2𝑙 = 0  

𝑛
𝑓=0

2
𝑐=1

𝑚
𝑔=1

𝑤
𝑞=1   𝑖 = 1, 2, … ,𝑚; 𝑙 = 1, 2, … , 𝑛 (8) 

∑ ∑ ∑ 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙 
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1 ∑ ∑ ∑ 𝑋𝑘𝑖𝑏𝑙𝑔𝑐𝑓   

𝑛
𝑓=0

2
𝑐=1

𝑚
𝑔=1    

𝑘 = 1,2, …𝑤;  𝑖 = 1, 2, … ,𝑚;𝑏 = 1,2;  𝑙 = 1, 2, … , 𝑛 (9) 

𝑂𝑏𝑙
𝑐 − 𝑇𝑏𝑙

𝑐    ∑ ∑ ∑ ∑ ∑ 𝑂𝑘𝑏𝑙 . 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙
𝑚
𝑖=1

𝑛
𝑗=1

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1    

𝑏 = 1,2;  𝑙 = 1, 2, … , 𝑛 (10) 

𝑇𝑏𝑙
𝑐 − 𝑂𝑎𝑗

𝑐  ∑ ∑ ∑ 𝑇ℎ𝑖 . 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙
𝑤
𝑘=1

𝑚
𝑖=1

𝑚
ℎ=1 − 𝐵. (1 − ∑ ∑ ∑ 𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙)

𝑤
𝑘=1

𝑚
𝑖=1

𝑚
ℎ=1   𝑏 = 1,2;  𝑙 = 1, 2, … , 𝑛 𝑎 =

1,2; 𝑗 = 1, 2, … , 𝑛 (11) 

𝑂2𝑙
𝑐 − 𝑃𝑙

𝑐∑ ∑ ∑ ∑ ∑ 𝑂𝑘2𝑙 . 𝑋𝑘ℎ𝑎𝑗𝑖2𝑙  𝑙 = 1, 2,… , 𝑛
𝑚
𝑖=1

𝑛
𝑗=𝑖

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1     𝑘 = 1,2, …𝑤 𝑙 = 1, 2, … , 𝑛  (12) 

𝑃𝑙
𝑐 − 𝑂1𝑙

𝑐  𝑃𝑙   𝑙 = 1, 2, … , 𝑛 (13) 

{
 
 

 
 

𝑂1𝑙
𝑐 − 𝑂2𝑓

𝑐  ∑ ∑ ∑ ∑ 𝑂𝑘1𝑙
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1 . 𝑋𝑘ℎ𝑎𝑗𝑖1𝑙

−𝐵. (2 − ∑ ∑ ∑ ∑ (𝑋𝑘ℎ𝑎𝑗𝑖1𝑙 +
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1 𝑋𝑘ℎ𝑎𝑗𝑖1𝑓)

𝑤
𝑘=1 + 𝑄𝑓𝑙)

𝑂1𝑓
𝑐 − 𝑂2𝑙

𝑐  ∑ ∑ ∑ ∑ 𝑂𝑘1𝑓
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1

𝑤
𝑘=1 . 𝑋𝑘ℎ𝑎𝑗𝑖1𝑙

−𝐵. (2 − ∑ ∑ ∑ ∑ (𝑋𝑘ℎ𝑎𝑗𝑖1𝑙 +
𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1 𝑋𝑘ℎ𝑎𝑗𝑖1𝑓)

𝑤
𝑘=1 + 1 − 𝑄𝑓𝑙)

  

𝑖 = 1, 2, … ,𝑚; 𝑘 = 1, 2, … , 𝑤;  𝑓 = 1, 2, … , 𝑛; 𝑙 = 𝑓 + 1, 𝑓 + 2,… , 𝑛 (14) 

𝑂20
𝑐 = 0 (15) 

𝐶𝑚𝑎𝑥 𝑂2𝑙
𝑐   𝑙 𝜖 𝐽  (16) 

𝑁𝑊𝑘 = ∑ ∑ ∑ ∑ ∑ ∑ 𝑥𝑘ℎ𝑎𝑗𝑖𝑏𝑙  . (𝑂𝑘𝑏𝑙 + 𝑇ℎ𝑖)
𝑚
𝑙=1 ∀𝑘 = 1,2, … , 𝑤2

𝑏=1
𝑚
𝑖=1

𝑛
𝑗=0

2
𝑎=1

𝑚
ℎ=1    (17) 

𝑁𝑊𝑚𝑎𝑥 ≥ 𝑁𝑊𝑘      ∀𝑘 = 1,2, … , 𝑤 (18) 

𝑋𝑘ℎ𝑎𝑗𝑖𝑏𝑙   {0; 1} 𝑘 = 1,2, …𝑤; ℎ = 1, 2, … ,𝑚; 𝑎 = 1,2;  

𝑗 = 0,1, 2, … , 𝑛;  𝑖 = 1, 2, … ,𝑚;  𝑏 = 1,2;  𝑙 = 1, 2, … , 𝑛 (19) 

𝑄𝑓𝑙   {0; 1} 𝑓 = 1, 2, … , 𝑛; 𝑙 = 𝑓 + 1, 𝑓 + 2,… , 𝑛 (20) 

 

The mathematical model with the objective function to minimize makespan is represented in Eq (3). Eq (4) 

ensures that only one activity with one machine and operator is allowed for a specific job. Eq (5) ensures that 

for each specific activity of one job, there is only one preceding activity from another job performed by the same 

operator. Eq (6) specifies that each operator starts their activities with the unloading activity (index 2) of job 0 

(index 0). Eq (7) ensures that job 0 (index 0) does not have a setup activity (index 1). Eq (8) ensures that a specific 

job only has one setup activity and one unloading activity on the same machine. Eq (9) ensures that each 

operator follows a feasible activity sequence; activity c of job f precedes activity b of job l, which follows activity 

a of job j. Eq (10) states that the difference between the completion time of activity b of job l  and the moving 

completion time (when operator k moves to perform activity b of job l) is equal to the time taken by operator k 

to complete activity b of job l. Eq (11) states that the difference between the moving time (when operator k moves 

to perform activity b of job l) and the completion time of the previous activity (activity a of job j) is equal to the 
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moving time to activity b of job l. Eq (12) ensures that operator k performs the unloading activity (index 2) of job 

l only after the machining time for the job is completed. Eq (13) ensures that the machining process starts 

immediately after the setup activity. Eq (14) includes two constraints for using the same machine, ensuring that 

the setup activity for job l occurs only after the unloading activity for job f has finished. Eq (15) forces the 

unloading activity of job 0 to have no duration. Eq (16) calculates the makespan. Eq (17) and (18) calculate the 

total and busiest non-waiting times, respectively. Eq (19) and (20) determine feasible binary variables. 

 

2. Workload Smoothness Index (WSI)  

The second objective function is the Workload Smoothness Index (WSI), which measures workload imbalance. 

It is adapted from the Smoothness Index (SI) used in assembly line balancing problems [19]. WSI is calculated 

based on each operator's non-waiting time, which includes setup, unloading, and moving activities [19]. The 

WSI is calculated using the squared deviations between the busiest operator’s non-waiting time and the non-

waiting time of each operator during a production cycle. 

 

The WSI mathematical model, developed by Akbar and Irohara [19], is non-linear, making it a Mixed-Integer 

Non-Linear Programming (MINLP) model. Two decision variables are added to the WSI model to achieve the 

second objective function. 
 

Decision Variables 

NWk  = non-waiting time for operator k  

NWmax  = maximum non-waiting time among all operators.  

 

WSI=√∑ (NWk-NWmax)
2w

k  (21) 

 

Results and Discussions 

 
The mathematical model was developed and executed using Gurobi software across various cases. These cases 

are labeled in the format n  m  w, where n represents the total number of jobs, m is the number of machines 

used, and w is the number of operators assigned. The data processing focuses on finding values to minimize 

both the first objective function (makespan) and the second objective function (operator workload balance). 

Achieving the makespan value is accomplished using a Mixed-Integer Linear Programming (MILP) 

optimization strategy, which minimizes the makespan. Additionally, MILP calculates the differences in operator 

workload. To balance the workload and achieve a Workload Smoothness Index (WSI) value lower than that 

from the MILP model, a Mixed-Integer Quadratic Programming (MIQP) optimization strategy is used. 

 

Mixed-Integer Quadratic Programming (MIQP) addresses mathematical optimization problems with quadratic 

objective functions. The WSI mathematical model is quadratic and squared to fit the MIQP model and Gurobi 

software’s module. The mathematical model for obtaining WSI is: 

𝑊𝑆𝐼2 = ∑ (𝑁𝑊𝑘 −𝑁𝑊𝑚𝑎𝑥)
2𝑤

𝑘   (22) 

 

Equation (22) is the objective function to balance the operator workload. The MIQP model aims to provide the 

best makespan; this value can be equal to the makespan value obtained from the MILP model. To maintain the 

makespan values achieved from the MILP model, an additional constraint is added: the maximum allowable 

makespan, which is the makespan value from the MILP model. The makespan value in the MIQP model must 

be less than or equal to this maximum allowable makespan. The mathematical model used is: 

Cmax  𝐶𝑚𝑎𝑥
𝑙𝑖𝑚   (23) 

 

The MIQP results in a WSI value lower than that from the previous model, adjusted to the allowed makespan. 

An additional constraint is introduced to obtain a WSI close to zero, specifying a maximum allowable WSI value. 

This is achieved using a Mixed-Integer Quadratically-Constrained Programming (MIQCP) optimization 

strategy. According to this strategy, there is a constraint on the maximum allowable WSI squared value. The 

results of the MIQCP are makespan and WSI values that are less than or equal to the allowed WSI. 

WSI2  𝑊𝑆𝐼𝑙𝑖𝑚
2   (24) 

 

The MIQCP model results adjust the makespan minimization to accommodate the maximum allowable WSI 

squared value. Three optimization strategies are executed sequentially to obtain the values for the first and 

second objective functions. Gurobi software (as a solver) is run using different input data sets, each providing a 

specific result. The obtained results are the makespan and WSI, which are compared and analyzed. Additionally, 
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the gap between each result is assessed to evaluate how close the solution found by the solver is to the optimal 

solution of the problem. 

 
Table 2. The results from Gurobi Software 

Cae name 

 n  m  w 

Solver Setting and Result 1 Solver Setting and Result 2 Solver Setting and Result 3 

Setting Solution 
Run Time (s) 

Setting Solution 
Run Time (s) 

Setting Solution 
Run Time (s) 

Problem 𝐶𝑚𝑎𝑥
𝑙𝑖𝑚  𝑊𝑆𝐼𝑙𝑖𝑚

2  𝐶𝑚𝑎𝑥 WSI Gap Problem 𝐶𝑚𝑎𝑥
𝑙𝑖𝑚  𝑊𝑆𝐼𝑙𝑖𝑚

2  𝐶𝑚𝑎𝑥 WSI Gap Problem 𝐶𝑚𝑎𝑥
𝑙𝑖𝑚  𝑊𝑆𝐼𝑙𝑖𝑚

2  𝐶𝑚𝑎𝑥 WI Gap 

4  3  2 

MILP - - 160.5 61.75 0% 1 MILP - - 176.25 56.5 0% 1  MILP - - 154.25 36.25 0% 5 

MIQP 160.5 - 160.5 29.75 0% 0 MIQP 176.25 - 176.25 38.5 0% 0  MIQP 154.25 - 154.25 36.25 0% 15 

MIQCP - 4 290 0.25 100% 600 MIQCP - 4 202 0.5 100% 600  MIQCP - 4 299 0.25 100% 600 

4  4  2 

MILP - - 142.5 14.25 0% 6 MILP - - 167.25 9.5 0% 6  MILP - - 137 25.25 0% 1 

MIQP 142.5 - 142.5 13.75 0% 1 MIQP 167.25 - 167.25 0.5 0% 1  MIQP 137 - 137 25.25 0% 0 

MIQCP - 4 311 0.25 100% 600 MIQCP - 4 456 0.5 100% 600  MIQCP - 4 271 0.25 100% 600 

4  4  3 

MILP - - 135 49.45 0% 0 MILP - - 139.5 96.47 0% 0  MILP - - 122.75 7.28 0% 1 

MIQP 135 - 135 1.6 0% 0 MIQP 139.5 - 139.5 38.27 0% 0  MIQP 122.75  122.75 5.2 0% 5 

MIQCP - 4 177 0 0% 600 MIQCP - 4 295 0.25 100% 600  MIQCP - 4 343 0.25 100% 600 

5  3  2 

MILP - - 198.25 87 0% 15 MILP - - 196.5 11 0% 15  MILP - - 208 0.25 0% 15 

MIQP 198.25 - 198.25 87 0% 11 MIQP 196.5 - 196.5 8 0% 11  MIQP 208 - 208 0.25 0% 20 

MIQCP - 4 215 0 0% 1 MIQCP - 4 215 0 0% 1  MIQCP - 4 434 0.25 100% 600 

5  4  2 

MILP - - 175.5 15 0% 20 MILP - - 170.25 28 0% 20  MILP - - 178.5 20.75 0% 45 

MIQP 175.5 - 175.5 6 0% 20 MIQP 170.25 - 170.25 3 0% 20  MIQP 178.5  178.5 8.5 0% 71 

MIQCP - 4 220 0 0% 1 MIQCP - 4 201 0 0% 1  MIQCP - 4 384 0.25 100% 600 

5  4  3 

MILP - - 150.25 54.22 0% 50 MILP - - 162 72.15 0% 50  MILP - - 154.25 69.9 0% 25 

MIQP 150.25 - 150.25 34 0% 85 MIQP 162 - 162 0.5 0% 85  MIQP 154.25 - 154.25 27.21 0% 90 

MIQCP - 4 296 0 0% 600 MIQCP - 4 480 0.5 100% 600  MIQCP - 4 217 0 0% 66 

6  3  2 

MILP - - 226.5 64.25 40,33% 535 MILP - - 228.25 92.5 41,18 535  MILP - - 248 75.5 2,1 % 600 

MIQP 226.5 - 226.5 64.25 0% 600 MIQP 228.25 - 228.25 80.5 100% 600  MIQP 248 - 248 33.5 100% 600 

MIQCP - 4 266 0 0% 600 MIQCP - 4 595 0.5 100% 600  MIQCP - 4 493 0.5 100% 600 

6  4  2 

MILP - - 201.5 18.75 32,36% 600 MILP - - 198.75 9.5 100% 600  MILP - - 214.5 11.5 25,64% 285 

MIQP 201.5 - 201.5 18.75 100% 600 MIQP 198.75 - 198.75 11.5 100% 600  MIQP 214.5 - 214.5 11.5 100% 600 

MIQCP - 4 538 0.25 11,35% 600 MIQCP - 4 531 0.5 100% 600  MIQCP - 4 451 0.5 100% 600 

6  4  3 

MILP - - 186.75 85.85 27,71% 600 MILP - - 185.75 73.41 27,72% 600  MILP - - 200 41.4 32,27% 600 

MIQP 186.75 - 186.75 0 0% 600 MIQP 185.75 - - - - Too short MIQP 200 - 200 29 100% 600 

MIQCP - 4 311 0 0% 293 MIQCP - 4 242 0 0% 293  MIQCP - 4 442 0 100% 600 

7  4  2 

MILP - - 235.25 12.75 40% 600 MILP - - 231.75 28.75 42% 600  MILP - - 244 17.75 43,13 % 600 

MIQP  - - - - Too short MIQP 231.75 - 231.75 32.75 100% 600  MIQP - - - - - Too short 
MIQCP - 4 622 0.25 100% 600 MIQCP - 4 523 0 100% 600  MIQCP - 4 326 0 0% 109 

7  4  3 

MILP - - 221.75 22.25 39,12% 600 MILP - - 205.5 32.57 34,67% 600  MILP - - 288.75 30.37 41,10% 595 

MIQP 221.75 - 221.75 3.25 100% 600 MIQP - -   100% 600  MIQP 288.75  288.75 11.33 100% 600 

MIQCP - 4 759 0.25 100% 600 MIQCP - 4 606 0.25 100% 600  MIQCP - 4 523 0.25 100% 600 

8  4  2 

MILP - - 270.5 58.25 48,44% 479 MILP - - 288.75 20.5 52,8% 479  MILP - - 288.75 20.5 53,50% 212 

MIQP  - - - - Too short MIQP 288.75 - - - - Too short MIQP   - - - Too short 
MIQCP - 4 707 0.25 100% 600 MIQCP - 4 493 0.25 100% 600  MIQCP - 4 530 0.5 83,59 % 600 

8  4  3 

MILP - - 241 102.61 43,98% 600 MILP - - 222 104.52 39,52% 600  MILP - - 246 49.25 46,44% 600 

MIQP  - - - - Too short MIQP  - - - - Too short MIQP   - - - Too short 
MIQCP - 4 293 0 0% 303 MIQCP - 4 349 0 0% 303  MIQCP - 4 557 0 0% 135 

9  4  2 

MILP - - 306.5 12.5 55,95% 600 MILP - - 303.5 16 55,76% 600  MILP - - 324.25 6.5 58, 13% 596 

MIQP 306.5  306.5 4.25 100% 600 MIQP 303.5  303.5 2 100% 600  MIQP 324.25  324.25 1.5 100% 600 

MIQCP - 4 726 0.25 100% 194 MIQCP - 4 369 0 0% 194  MIQCP - 4 654 0.5 100% 600 

9  4  3 

MILP - - 264.75 88.27 49% 600 MILP - - 254 93.44 47,14% 600  MILP - - 266.5 80.3 50,56% 597 

MIQP 264.75 - 264.75 62.56 100%  MIQP  - - - - Too short MIQP 266.5  - - - Too short 
MIQCP - 4 585 0.5 100% 600 MIQCP - 4 630 0.25 100% 600  MIQCP - 4 676 0.35 100% 600 

10  4  2 

MILP - - 321.75 14.75 56,63% 600 MILP - - 380.25 66.75 64,69%   MILP - - 347.75 41.25 62,11% 600 

MIQP 321.75  - - - Too short MIQP 380.25  380.25 0.25 100% 600  MIQP 347.75  347.75 2.4 100% 600 

MIQCP - 4 601 0.25 100% 600 MIQCP - 4 596 0.25 100% 600  MIQCP - 4 750 0.25 100% 600 

10  4  3 

MILP - - 266.75 82.299 49,39% 600 MILP - - 292 29.66 54,02% 600  MILP - - 285.5 43.62 53,85% 600 

MILP - - - - - Too short MIQP  - - - - Too short MIQP - - 285.5 43.62 100% 600 

MIQP 160.5 4 160.5 29.75 0% 600 MIQCP - 4 637 1.03 100% 600  MIQCP - 4 716 0.55 100% 600 

Note: 

Small Cases: 4  3  2, 4  4  2, 4  4  3, 5  3  2, 5  4  2, 5  4  3 

Medium Cases: 6  4  2, 6  4  3, 7  4  2, 7  4  3, 8  4  2, 8  4  3, 9  4  2, 9  4  3, 10  4  2, 10  4  3 
 

The MILP model was solved optimally (0% gap) by the solver, providing the best makespan, especially in minor 

cases such as 4  3  2, 4  4  2, 4  4  3, 5  3  2, 5  4  2, and 5  4  3. As previously mentioned, the solver 

cannot guarantee a good WSI since it is not included in the objective function, as shown by results such as a 

WSI of 61.75 for case 4  3  2 and 14.25 for case 4  4  2. A large WSI indicates a significant workload gap for 

each operator, in medium cases, such as 6  3  2, the gap rises to 40.33% (result 1), 41.18% (result 2), and 42.1% 

(result 3). This increasing gap suggests that the solver could not find the optimal solution, as the branch and 

bound search should continue. However, the solver's running time was limited to shorten data processing time. 

Extending the running time could decrease the gap, but it cannot be guaranteed that the solver will reach the 

optimal solution. Overall, the makespans from the MILP model have a relatively low range (between result 1 

and others) because the average values of each input data set are nearly the same. 

 

Like the MILP model, the MIQP model can also be solved optimally (0% gap) in minor cases. The critical 

difference is that the WSI value in the MIQP model is lower than in the MILP model. This difference in WSI 

occurs after applying Eq (22) to obtain the optimal solution with the squared element. In medium cases, such 

as 7  4  3, the gap and runtime increase, with gaps of 100% in results 1 and 3. This increase is due to the 

model's complexity, which complicates the search for the optimal solution. This is compounded by the additional 

mathematical model, making it more complex than the previous one. The results show that the MIQP model 

has some cases where a feasible solution cannot be obtained without extended running time. 
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The MIQCP model includes a constraint that allows the WSI (Eq 24) to decrease workload imbalance. The 

results show that the WSI in the MIQCP model is less than that in both the MILP and MIQP models. However, 

the makespan in the MIQCP model is higher than in the two previous models. The MIQCP model adjusts the 

resulting makespan to balance the operator workload. Sometimes, the MIQCP model increases the gap (100%) 

due to minimal movement in the solver's bounds; the solution barely changes, and the best bound remains at 0. 

The increased complexity of the model contributes to this widening gap, making the solution far from optimal. 

Gurobi's output in the resolve section shows the total number of constraints (rows), variables (columns), and 

iterations, reflecting the complexity of the mathematical model. 

 

Among the three MIQCP results with different input data sets, some cases achieve an optimal gap (0%), such 

as 4  4  3 and 5  3  2 with 0% gaps in results 1 and 2. However, result 3 shows a 100% gap. Variations in 

input data can affect the overall optimization problem, leading to different results, calculation complexities, and 

solver gaps. Each data set has unique characteristics that result in varying solutions (e.g., Gantt chart 

scheduling, makespan, and WSI) and solution spaces. 

 

The results are depicted in three Gantt charts illustrating machine and operator activities and each operator's 

workload. The Gantt charts for case 5  4  3 are used to determine the differences between the optimization 

strategies. 

 
Figure 1. Gantt chart of MILP model 

 

 
Figure 2. Gantt chart of MIQP model 

 

The Gantt charts reveal significant differences between the three optimization strategies. For five jobs, four 

machines, and two operators with different skill levels, the MILP model provides the best makespan but 

indicates a large WSI, signifying workload imbalance, with operator 1 busier than operators 2 and 3. The MIQP 

model, with an allowed makespan, can minimize WSI after applying Eq (22). The MIQCP Gantt chart shows 

balanced operator workloads, although the resulting makespan is higher.  
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Figure 3. Gantt chart of MIQCP model 

 

For more details, Table 3 presents non-waiting times, idle times, and the number of activities performed by each 

operator. 

 
Table 3. Number of activities, Non-waiting Time, Makespan, and Idle Time from the operators 

Model Operator Operator 1 Operator 2 Operator 3 

MILP Number of activities 6 activities 2 activities 2 activities 

Non-waiting Time 138 93 84.5 

Makepan 154.25 154.25 154.25 

Idle Time 16.25 61.25 69.75 

MIQP Number of activities 5 activities 3 activities 2 activities 

Non-waiting Time 114 97 92.75 

Makepan 154.25 154.25 154 

Idle Time 40.25 57.25 61.25 

MIQCP Number of activities 5 activities 3 activities 2 activities 

Non-waiting Time 106 106 106 

Makepan 217 216.75 119 

Idle Time 110 110.75 13 

Note:  

The operator's activities include setup and unloading 
 

The Gantt chart and Table 3 aim to illustrate how differences in skill levels between operators influence the 

performance values of different operators. Additionally, Table 3 shows the variations in the output obtained 

from the MILP, MIQP, and MIQCP models. The table includes three operators with varying skill levels: above 

average, average, and below average. In the MILP model, operator 1 performs more tasks and has a higher non-

waiting time than other operators, with relatively low idle time. Meanwhile, operators 2 and 3 have higher idle 

times. Since the objective function in MILP is to minimize the makespan, the model tends to assign more tasks 

to operator 1, who has a higher skill level, as evidenced by the number of activities performed—conversely, 

operators 2 and 3 exhibit lower efficiency with higher idle times. 

 

In the MIQP model, workload balancing becomes an objective function calculated from the WSI value, with an 

additional constraint of the allowable makespan. As a result, the WSI value decreases more than in the MILP 

model. The output shows an increase in efficiency for operators 1 and 2: operator 1 performs 5 activities with a 

non-waiting time of 144, while operator 2 performs 3 activities with a non-waiting time of 93. However, operator 

3 shows only a slight improvement in efficiency and reduced idle time. 

 

In the MIQCP model, the WSI value serves as a constraint to achieve a balanced distribution of non-waiting 

time, with the objective function focusing on minimizing the makespan. The results indicate that operators 1, 2, 

and 3 have a non-waiting time of 106. However, operators 1 and 2 still have high idle times, while operator 3 

has significantly lower idle time. Table 3 shows that operators with higher skill levels complete more activities, 

but operators 2 and 3 have fewer assignments. This occurs because operator 1 performs activities faster, 

allowing them to be assigned to subsequent tasks more quickly. 
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Conclusions 

 
This research developed the MTSSDRC model with two objective functions and introduced a new consideration: 

differences in operator skill levels. The complexity of the problem increases as each operator has different skill 

levels, necessitating a balance between minimizing the makespan and balancing the operator's workload in each 

production cycle. This issue is common in real-world systems, where finding industries with operators of 

uniform skill levels is challenging. This scenario mirrors many industries, such as aircraft manufacturing, 

where operators supervise multiple machines simultaneously, each with varying skills. 

 

The developed mathematical model was executed using three sequential optimization strategies: MILP, MIQP, 

and MIQCP. These techniques allocate operators with various skill levels according to available jobs. The results 

of these techniques demonstrate that skill level differences can impact efficiency and workload balance. 

Typically, operators with higher skills are assigned more activities, while those with lower skills receive fewer 

tasks. By incorporating these techniques into operational strategies, companies can enhance the skills of their 

operators to improve efficiency in aircraft component production. 

 

However, this research has limitations. The solver and model used are effective only for small and medium 

cases, with some solutions deviating significantly from the optimal. To address this, a metaheuristic algorithm 

is proposed to solve the MTSSDRC scheduling problem. This algorithm is well-suited for finding optimal 

solutions for all cases within shorter running times. Additionally, metaheuristic algorithms can efficiently 

handle complex problems and significant cases. 
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