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Abstract: Cognitive domains play a critical role in daily functioning. The prediction of cognitive 

load state is essential to better monitor work performance. This study aims to explore machine 

learning models to detect cognitive load or state using heart rate variability (HRV) signals. HRV 

data were recorded from thirty subjects during rest, two cognitive tasks (d2 Attention and 

Featuring Switcher task), and recovery. Seven HRV indexes from both time and frequency 

domains, extracted from raw R-R intervals, were used to identify whether subjects performed 

cognitive tasks. Five classifier models: linear support vector machine (LSVM), kernel SVM radial 

basis function, k-nearest neighbor (KNN), and random forest (RF), were trained and evaluated 

using a leave-one-out cross-validation approach. The accuracies and F-1 score range from 0.54 to 

0.62, with LSVM, showing the best. These acceptable performances indicate that the machine 

learning approach could be used to further distinguish between rest and cognitive state. With the 

ubiquity of non-invasive and low-cost wearable devices, this finding offers insight to be 

incorporated into personal work performance monitoring in the digital age. 
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Introduction 
 

Modern digital work relies much more heavily on 

cognitive functioning than physical demands. Cogniti-

ve functioning refers to the operation and interaction 

of and between mental processes involved in informa-

tion processing, such as attention, working memory, 

decision-making, and learning [1]. Furthermore, indi-

vidual cognitive performance fluctuates throughout 

the day, affected by health status, affective state, and 

other stressful conditions such as workload, time 

pressure, fatigue, sleep physical deprivation environ-

ment [2]. Therefore, maintaining cognitive function is 

crucial for work performance and daily functioning. Of 

particular concern is how to predict its current state, 

which will benefit various work applications encom-

passing critical systems, office work, operational 

environments, and others [3,4,5,6]. 

 

Traditionally, the cognitive state is measured subjecti-

vely by self-report or objectively inferred from a 

reduced behavioral performance over time, such as 

reaction time and errors. These assessments pose 

some limitations in terms of subjectivity (user’s bias), 

disruptiveness (users need to stop during the test 

administration), timeliness (a lead time between the 

assessment time and the results are known), and 

generalizability (the ability to be applied in various 

population or situations) [7]. 
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On the other hand, cognitive activation elicits 

autonomic nervous system (ANS) reactions which are 

commonly reflected by electrodermal activity (EDA) or 

skin conductance response (SCR), skin temperature 

(ST), and heart rate variability (HRV)  [7]. The last 

two decades have seen a growing trend toward using 

bio-signals HRV across various settings, perhaps 

because of its desirable characteristics: non-invasive, 

cost-efficient, and straightforward. In addition, the 

advance in technology and computer science have 

made HRV collection and analysis very accessible.  

 

Heart rate variability refers to the variation in time 

between adjacent heartbeats or RR intervals (see 

Figure 1) and is measured in milliseconds (ms). HRV 

reflects the complex interaction between heart-brain 

interactions and dynamic non-linear autonomic ner-

vous system (ANS) processes [8]. ANS consists of two 

branches, the sympathetic nervous system (SNS) and 

the parasympathetic nervous system (PNS), which 

work in a dynamic balance in a healthy organism. 

PNS activity predominates at rest, resulting in an 

average HR of 75 beats per minute (bpm). Conversely, 

when a person faces a stressor (e.g., excessive work-

loads, conflicting demands, tight deadlines, job inse-

curity, etc.), the SNS releases specific hormones to 

equip the person with the necessary resources to 

manage the stressor [8]. An optimal HRV level is 

associated with better general health status as it 

allows high self-regulatory capacity and adaptability 

or resilience to external and internal stimuli. Indivi-

duals with higher levels of resting vagally-mediated 

HRV are associated with higher performance of 

executive functions like attention and emotional 

processing by the prefrontal cortex [9]. 
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Research in HRV is mainly based on time or 

frequency domain analysis [11]. Time-domain indices 

measure the variability in normal-to-normal beat 

intervals, while frequency-domain indices quantify 

the power in frequency bands via spectral analysis. 

Among these indices, the most frequently reported in 

response to acute stress in time domains are 

decreases in SDNN, pNN50, and RMSSD, while in 

the frequency domain are reduced in high frequency 

(HF-HRV) and increases in low frequency (LF-HRV) 

[12]. Table 1 summarizes the time and frequency-

domain HRV parameters and their physiological 

origin. 

 

Beyond the clinical settings, it indicates the potential 

use of HRV analysis in several domains of organiza-

tional and management theory and practice [13]. With 

advances in technology and computer science, HRV 

analysis has been shifting toward a more predictive 

approach rather than an explanation-focused strategy 

using traditional statistical modeling [14]. The deve-

lopment of stress detection systems using HRV indi-

ces and machine learning techniques has shown 

moderate to good accuracies both in laboratory [15, 16, 

17, 18, 19] and field settings [20, 21, 22].  

This approach has been successful in differentiating 

non-stress and stress conditions that were commonly 

induced by various acute stressors such as arithmetic 

tests, Stroop tests, trier-social threat tests, Montreal 

imaging, and horror viewing (e.g., [17, 18, 23, 24]. 

Concepts of stress, emotions, and cognition load 

overlap and have complex interrelationships [7]. A 

recent review suggests that HRV should be more 

strongly correlated with cognitive fatigue than stress 

or mental workload [7]. While a growing body of 

literature also predicts cognitive state through HRV 

parameters and machine learning approaches, only a 

few studies have used a single wearable HRV sensor 

and modalities. Tsunoda et al. [25] used traditional 

and established ECG system devices (BIOPAC 3 

channels) to predict when the cognitive performance 

started to decrease. Some scholars (e.g., [26, 27, 28] 

also employed three ECG channels to detect mental 

stress and cognitive task. One of the few studies that 

collected HRV data using one wearable sensor is 

Huang et al., [29]. The authors recorded through the 

‘LaPatch’ wearable ECG, but the validity of this 

measure is still unclear. Besides, their goal was to 

predict mental fatigue using a set of mathematic 

quizzes which did not mimic cognitive tasks at work. 

 
Figure 1.  The calculation of HRV is obtained from the R–R intervals (in milliseconds or ms) of the QRS complex, 

extracted from the electrocardiogram (ECG) signal [10] 

 
Table 1. Summary of the HRV features and their interpretation 

Parameter Description  Unit Origin 

SDNN Standard deviation of all NN* intervals ms Reflects the cyclical components 

responsible for variability or respiratory-

related to the parasympathetic nervous 

system 

RMSSD The square root of the mean of the sum of the 

squares of differences between successive NN 

intervals 

ms Reflects the vagally mediated changes 

reflected in HRV 

pNN50 Percentage of differences between successive 

adjacent NN intervals that are > 50 ms 

% Reflects variability in parasympathetic or 

vagal tone  

Total power Sum of the energy in all frequency bands   Variance of all NN intervals 

VLF Total spectral power of all NN intervals (frequency 

power 0 – 0.04Hz) 

ms2 Reflects changes in the combination of 

sympathetic and vagal activity; baroreflex 

activity 

LF Total spectral power of all NN intervals (frequency 

power 0.04 – 0.15Hz) 

ms2 Reflects changes in mix sympathetic and 

vagal activity; baroreflex activity 

HF Total spectral power of all NN intervals (frequency 

power 0.15 – 0.4Hz) 

ms2 Reflects changes in parasympathetic or 

vagal tone 

LF/HF The ratio of low to high-frequency power % A mix of sympathetic and vagal activity 

Notes. The NN (normal to normal) intervals represent RR intervals which are filtered or free from artifacts 
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Meanwhile, other researchers [4, 28] have used other 

physiological modalities such as facial features, EDA, 

and skin temperature to improve the accuracy of cognitive 

performance prediction in various tasks. The use of 

multiple sensors and physiological signals in cognitive 

state detection has also been emphasized in a recent 

review [3, 30], which are more challenging if applied 

in natural conditions. A summary of related work in 

HRV-based for detecting cognitive load or cognitive 

performance is displayed in Table 2. Although these 

studies produced models with relatively high accuracies, 

it is desired to implement a minimal and unobtrusive 

sensor setup for comfort in daily life applications. 

 

Furthermore, due to the nature of the machine 

learning algorithms, the spurious relationship among 

features can be misinterpreted because the theoretical 

underpinning has been ignored [14]. For example, a 

short-term five minutes recording is required to get 

reliable frequency-domain features [11], whereas 

using the machine learning approach, an ultra-short 

duration of around 10-60 seconds is commonly utilized  

[3, 31]. Of particular concern, hence, is to detect 

cognitive load using a single HRV sensor and HRV 

features only according to the HRV measurement in 

psychophysiological research, which can be easily 

further deployed into portable wearable devices. 

Moreover, it allows for real-time physiological data 

collection, an essential feature of personal producti-

vity management in the digital age [32].  

 

Therefore, this study aims to explore machine 

learning classification models of cognitive load based 

on HRV. Cognitive load refers to the number of 

working memory resources used. We trained different 

models to classify the state of cognitive function and 

evaluated the performance of the best model. Our 

main contribution is to show that HRV measures 

derived from one wearable sensor ECG have the 

potential to detect cognitive load or stress state. We 

also employed two cognitive tasks, measured by 

attention and speed processing, strongly associated 

with cognitive domains during work but less studied 

[24]. The present study explores the development of a  

Table 2. Related works with the main attributes 

Authors Signals  
Device, # 

Sensors 
Subject 

Cognitive 

stressor 

Features Target Classifiers 

(Accuracy) 

McDuff et 

al., [33] 
HRV (PPG) 

infrared 

digital cameras, 

contactless 

10  
Mental 

arithmetic 

HRV: HR, LF 

(nu), HF (nu), 

LF/HF 

BR 

Cognitive 

stress and rest NB (70%) 

LSVM (70%) 

Tsunoda et 

al., [25] 

HRV 

(ECG) 

BIOPAC,  

3 channels 
45  ATMT 

AVNN, CVNN 

SDNN, pNN50, 

LF, HF, LF/HF, 

L, T, HF peal, 

LF peak 

Changes in 

cognitive 

performance 
SVM (60%)  

RF (57.8%) 

 

Quintero et 

al.,[28]  

HRV 

(ECG) 

HP 78354A 

ECG monitor 

(Hewlett-

Packard), 

3 channels 

16  

PVT, n-back, 

visual 

search 

HRV: LF, LF 

(nu), HF, HF 

(nu) 

EDA: SCL, 

SCR 

Cognitive task 
KNN (66%) 

LSVM (62%) 

GSVM (56%) 

LDA (62%) 

Castaldo et 

al., [27] 

HRV 

(ECG) 

Easy ECG 

Pocket Atas 

Medica, 

3 channels 

42 
University 

examination  

HR,  

Mean RR, 

SDNN, pNN50, 

LF, HF, LF/HF,  

TP, 

SD1, SD2, 

Entropy 

Stress and 

rest 

SVM (88%) 

LDA (94%) 

Wang et al., 

[26] 

HRV 

(ECG) 

HP 78354A 

ECG monitor 

(Hewlett-

Packard), 

3 channels 

160 

(adolescents) 

Arithmetic 

test 

AVNN, SDNN,  

RMSSD 

pNN50, 

SDANN, TP, 

VLF, LF, HF, 

LF/HF, L, T, 

HF, SD1/SD2 

Mental stress 

and rest 
SVM (80.2%) 

K-NN (72.8%) 

RF (84.6%) 

DT (84.6%) 

XGBoost 

(93.4%) 

Huang, et 

al., [29] 

HRV  

(1 channel) 

LaPatch 

Wearable  

(one channel) 

35 

Mathematic 

Quiz (spatial 

imagination, 

computation

, reasoning, 

and 

memory) 

AVNN, pNN50, 

RMSSD, TP, 

VLF, LF 

Mental fatigue 

and rest SVM (57.08% ) 

K-NN (65.37%) 

NB (48.84%) 

Logistic 

(59.71%) 

Notes. PPG= Photoplestymograph, BVP = Blood Volume Pressure, BR= Breathing rate. EDA= Electrodermal activity. ATMT = 

Advanced Trial Making Test. SCL = Skin conductance level, SCR = Skin conductance response. AVNN = Average NN internal, TP = 

Total power, SD1, SD2= non-linear HRV features based Poincaré plot. 
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system to measure and observe cognitive states that 

influence individual productivity and help workers to 

manage challenges at work better. 

 

Methods 
 

Respondens 
 

Thirty right-handed students (male: 17, female: 13, 

age range: 19–24 years old; age Mean = 21.0 with SD 

= 1.38 years) participated in this study without a 

history of psychiatric diseases or other medical problems. 

All participants were asked to provide informed 

written consent before the experiment was initiated. 

The study was approved by the Local Research Ethics 

Committee and followed the Helsinki Declaration. 

 

Cognitive Load Tasks 

 

In this study, an original d2 Attention Test was 

executed as a paper-and-pencil version [34]. This task 

assesses selective and sustained attention, a critical 

cognitive function in everyday life [35]. Participants 

have to scan for target stimuli among a variety of 

distractors. The target is defined as the letter d with 

two apostrophe marks which may be located above or 

below the letter. There are a total of 14 rows consisting 

of 47 letters. The participants have 20 seconds to 

cancel out as many target symbols as possible on each 

row. She or he should immediately move on to the 

next row after the time has elapsed. The test duration 

lasts approximately 5 minutes.  

 

The second task is the Feature Switching Task which 

assesses cognitive flexibility involved in repeatedly 

switching between rule dimensions [36]. The task was 

executed using Psychology Experiment Building 

Language (PEBL), an open-source psychological test 

battery [37]. Participants viewed a screen with ten 

colored shapes, five different colors, and five different 

shapes. Each object only had a single dimension in 

common with another object (color, shape, or letter). A 

participant was asked to choose a matching object 

based on a shape, color, or letter displayed at the top 

of the screen after one object was circled. After 

successfully matching the object, the participant was 

required to "switch" to a different feature, try to match 

the object based on that feature, and then return to 

the previous feature. The task consisted of three 

sessions, each of which had nine alternative configu-

rations and ten responses from the participants 

(following a practice round). More detail about the 

task execution can be found in [36]. 

 

HRV Recording 
 

The inter-beat intervals (IBI) or RR of HRV were 

collected from a chest-strap device Polar H10 (Polar 
 

Figure 2. Screenshot of Switcher Task (PEBL Battery [37] 
 

Electro, Kempele, Finland), which had an excellent 

validity when being compared to a three-lead ECG 

Holter monitor [38]. The elite HRV app [39] was 

employed to store the recording IBI on a smartphone. 

This app exported raw data as a text file and imported 

it into Kubios HRV software [40]. Pre-processing was 

conducted by filtering out the artifact in the IBI time 

series at the medium correction level. Subsequently, 

the software provided the time and frequency-domain 

analysis of the IBI. In this study, the time-domain 

HRV features consisted of the mean of the heart rate 

(Mean HR), the standard deviation of the R-to-R 

intervals (SDNN), the root mean square of successive 

differences (RMSSD), and the percentage of success-

sive normal sinus RR intervals more than 50 ms 

(pNN50). The frequency-domain indexes included the 

low-frequency (LF), high frequency, and ratio of low 

and high frequency (see Table 1). The LF and HF were 

quantified in normalized units (nu), representing the 

proportion of the power for a specific frequency band 

and the summed power of the LF and HF bands.  

 

Procedure 

 

Upon obtaining consent, the Polar H10 device was 

securely placed on the participant’s chest just below 

the chest muscles. Participants were asked to 

abstain from caffeine, smoking, and heavy meal 

consumption two hours before the data acquisition, 

following the methodological consideration for n 

HRV research [11]. This study emphasized controlling 

these transient variables influencing HRV. The 

measurement was taken while participants were 

sitting in front of a 15” laptop screen. The baseline 

and recovery measurements were collected by having 

participants remain stationary for five minutes. The 

cognitive tasks d2 attention and feature switching task 

were performed sequentially. To distinguish recording 

between two consecutive sessions, we did a manual 

timestamp. It allowed us to align later with HRV 

data analyzed via Kubios HRV software [40] and 

minimize the possibility of interruption between 

sessions. Figure 3 shows the experimental protocol. 
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Data Analysis, Feature Selection, and Machine 

Learning Models Development 

  
Before classifier models were built, the normality of all 

HRV variables was analyzed with the Kolmogorov–

Smirnov statistic. When data violates the normality 

assumption, the median and interquartile range 

(IQR: percentile 25th and 75th) are reported. The 

architecture of the proposed HRV-based cognitive 

recognition system is depicted in Figure 4. The input 

is raw HRV signals, and the output is the automatic 

decision on the two cognitive states under investi-

gation (baseline and rest as the non-cognitive class, d2 

attention, and feature switching task as the cognitive 

load class).  

  

We developed a machine learning model using binary 

or two-classes labeling because this exploratory study 

focused on distinguishing whether subjects expe-

rienced cognitive load rather than classifying between 

cognitive tasks. We labeled baseline and rest sessions 

as the non-cognitive class (class 1) and the d2 atten-

tion and switcher task as the cognitive class (class 2).  

 

As there is no clear consensus on HRV metrics in the 

field of HRV-based prediction through the ML 

approach, we selected the features based on the 

knowledge domain in cognitive and HRV literature [8, 

11, 41] and related ML studies (see Table 2). We did 

not utilize purely data-driven approaches to give 

inputs to a machine learning algorithm. We selected 

HR, SDNN, RMSSD, and pNN50 from the time 

domain and HF, LF, and LF/HF from the frequency 

domains. The role of these features in the ANS and 

cognitive has pertained in the prior section, while a 

more detailed discussion can be found in [12], [24]. 

Furthermore, we conducted a Spearman rank 

correlation analysis to check the correlation between 

all features. Table 3 shows the moderate to high 

coefficient correlation for all pairs of HRV features 

used in this (all p<0.001).  

  

We trained binary classifiers on five predictive 

algorithms: Linear Support Vector Machine (SVM), 

kernel radial basis function SVM, Naïve Bayes (NB), k-

nearest neighbor (kNN), and Random Forest (RF).   

 
Figure 3. Experimental protocol 

 

 
 

Figure 4. An architecture of HRV cognitive recognition system  
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These classifiers were chosen because they are well 

established and because there is a good trade-off 

between their complexity and computational cost [42], 

[43]. The SVM, or the maximum margin classifier, is 

one of the best-performing predictive methods widely 

implemented in HRV-based classification models. 

This study applied linear and radial basis kernels 

using the default kernel functions provided by the sci-

kit-learn library [44]. The kNN approach classifies 

new data points using their similarity (e.g., distance 

function) to the available data. We utilized k = 50 

(number of nearest neighbors) and a Euclidean 

distance function with no distance weighting. A naïve 

Bayes classifier is built based on Bayes' Theorem that 

assumes independencies among features. Again, we 

used the default settings for the parameters. The 

random forest is an ensemble learning technique that 

combines the output of multiple decision trees (in this 

study 100) to obtain a more stable and accurate 

prediction than individual decision trees. It is usually 

trained with the bagging method [43]. 

 
Models are validated using leave-one-out cross-

validation (LOOCV). This method is recommended in 

the affective computing domain [45] because it 

provides a less biased measure of the test mean 

square error compared to a single train-test set. It is 

fitted n (sample size) times by leaving out one subject 

for the testing and n – 1 for training the model.  

 
Performance evaluation is conducted by accuracy and 

F-1 score. Accuracy was calculated as the number of 

correct predictions (sum of true positive and true 

negative predictions) into the binary groups (no 

cognitive and cognitive), divided by the total number 

of predictions. The F-1 score reflects the overall ability 

to make a correct classification. It is a harmonic mean 

of precision and recall or sensitivity. Precision refers 

to the proportion of identifications divided by the total 

number of classified positive samples, either correctly 

or incorrectly. At the same time, recall is calculated as 

the proportion of positive identifications divided by the 

total number of positive samples). The analysis was 

completed using sci-kit learn; a library specialized in  
 

 

machine learning from Python [44].   
 

Results and Discussions 
 

Descriptive Statistics 

 

Table 4 displays descriptive statistics of heart rate and 

six HRV features within two and four classes. Since 

not all HRV variables met the normality assumption 

(e.g., pNN50), we also reported the respective medians 

and interquartile ranges (IQRs). Although non-

normality data did not affect the ML models' 

performance, it is not mandatory for the classification 

models. We have also employed feature scaling using 

the standardized scale as suggested by [46], such that 

data have the properties of a standard normal 

distribution with a mean of zero and a standard 

deviation of one. Our data suggested that the differen-

ces in all HRV between any cognitive task and non-

cognitive task were in the expected direction and 

magnitude. When individuals face stressors, their 

bodies release adrenaline and cortisol hormones 

which elevate their heartbeat and raise blood pressure 

as a way of coping with the situation [9, 12]. An 

increase in LF when performing cognitive tasks 

indicated the activation of the sympathetic system as 

a natural response to cope with external stressors [24]. 

Furthermore, reduced RMSSD, pNN50, and HF 

reflect the withdrawal of parasympathetic or vagal 

tone activity [47]. At the same time, lower SDNN is 

also associated with weaker cognitive performance in 

both global and specific cognitive domains [24]. These 

feature trends are in line with studies reviewing the 

relationship between HRV and external stimuli, such 

as stress [12, 48], executive functioning [47], and 

emotions [49]. The LF/HF, however, did not con-

sistently increase during the cognitive load task. 

Although many HRV-based machine learning models 

have used this metric as a predictor of certain beha-

vioral outcomes [17, 50, 51], there is a consensus 

among HRV scholars that the role of LF/HF as an 

index of balance between sympathetic and parasym-

pathetic system is ambiguous, thus lowering its 

predictive value [11].  

 

Table 3. Spearman correlation coefficient between HRV features 

 
 Mean HR SDNN RMSSD pNN50 LF (nu) HF (nu) LF/HF 

Mean HR 1.             

SDNN -0.62 1           

RMSSD -0.74 0.84 1         

pNN50 -0.73 0.84 0.89 1       

LF (nu) 0.37 -0.33 -0.60 -0.62 1     

HF (nu) -0.38 0.34 0.60 0.61 -0.87** 1  

LF/HF 0.36 -0.33 -0.60 -0.62 0.88 -0.89 1 
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Machine Learning Classifiers  

  

The performance of each algorithm on binary classes 

with is presented in Table 5 with the leave-one-out 

cross-validation. In addition to accuracy and F-1 score, 

we also reported the precision and recall metrics.  

  

The LSVM model exhibited the highest performance 

of the other classifiers, with around 61% of accuracy, 

62% precision, 62% recall, and a 0.62 F-1 score. The 

lowest accuracy was exhibited by the k-NN (accuracy: 

0.54, precision: 0.55, recall: 0.54), accompanied by a 

0.51 F-score. The ability of LSVM to act as the best 

classifier in HRV analysis has also been recognized in 

prior studies [15, 41]. This finding supports the nature 

of linear correlations among time and frequency 

domains of HRV indices. Although k-NN was among 

the most used algorithm in building HRV-based ML 

models, its lower performance compared to other 

algorithms was also reported in other studies [26], 

[53]. This indicated the variance of performance 

across some supervised classification algorithms. 

Meanwhile, some algorithms had accuracies relative-

ly similar to F-1 scores (e.g., Naïve Bayes). This might 

be due to our balance data for each class (n = 60 for 

either cognitive or non-cognitive classes). For 

imbalanced data, the F-1 score provides more robust 

results because it evaluates both recall and precision.  

  

While the classification accuracy in this study is 

slightly lower when compared to prior studies [3, 25, 

54], our models can be considered acceptable. Using 

the same dataset to infer cognitive load from a wrist-

worn physiological sensor's data, Gjoreski et al., [54] 

reported the accuracies of 13 machine-learning 

methods ranging from 0.50 to 0.69. Using a wearable 

device, Tervonen et al., [3] compared six ultra-short 

window length measurements (5, 10, 25, and 30 s) to 

detect cognitive load. The authors utilized 82 – 93 

selected physiological features and found that the 

highest accuracy was 67.6% at 25 s window length. 

Nevertheless, those previous studies employed multi-  

Table 4. Descriptive statistics of Heart Rate and HRV indices 

   Mean Stdev Median IQR  

HR 4 classes Baseline 82.73 9.41 82.00 78.50 85.25 

  d2 Attention 89.20 13.25 88.00 80.25 96.25 

  Switcher Task 86.07 10.69 84.50 80.00 91.00 

  Rest 83.50 9.25 84.50 78.75 87.50 

 2 classes No Cognitive 83.12 9.26 83.12 79.00 87.00 

  Cognitive 87.63 12.04 86.00 80.25 95.50 

SDNN 4 classes Baseline 40.69 17.59 34.25 29.08 45.93 

  d2 Attention 31.87 14.29 28.50 20.28 43.73 

  Switcher Task 34.19 12.80 30.90 25.05 41.90 

  Rest 40.26 16.51 35.45 29.98 42.18 

 2 classes No Cognitive 40.47 16.92 35.35 29.68 42.78 

  Cognitive 33.03 13.50 30.05 23.83 42.30 

RMSSD 4 classes Baseline 40.60 24.82 34.15 27.23 43.50 

  d2 Attention 33.42 20.62 29.55 20.18 39.80 

  Switcher Task 33.07 16.43 30.85 23.20 39.23 

  Rest 35.54 20.47 28.75 24.35 40.33 

 2 classes No Cognitive 38.07 22.70 30.10 25.15 41.98 

  Cognitive 33.24 18.48 29.80 21.95 39.03 

pNN50 4 classes Baseline 18.66 18.22 14.67 5.82 22.90 

  d2 Attention 14.63 17.79 9.17 1.58 23.44 

  Switcher Task 13.31 14.65 9.79 3.37 19.32 

  Rest 13.93 16.52 7.53 4.31 21.57 

 2 classes No Cognitive 16.29 17.41 9.48 4.60 21.71 

  Cognitive 13.97 16.17 9.39 2.14 20.01 

LF (nu) 4 classes Baseline 53.98 20.20 57.25 35.82 71.94 

  d2 Attention 53.83 17.74 57.53 38.62 69.59 

  Switcher Task 58.85 14.75 60.26 47.40 70.48 

  Rest 63.73 16.83 61.44 47.52 77.48 

 2 classes No Cognitive 58.86 19.08 59.25 43.65 73.15 

  Cognitive 56.34 16.37 59.32 43.00 69.71 

HF (nu) 4 classes Baseline 45.89 20.20 42.68 27.56 63.83 

  d2 Attention 45.93 17.67 41.97 30.37 60.92 

  Switcher Task 51.07 55.22 39.74 29.33 54.08 

  Rest 36.21 16.82 38.56 22.50 52.10 

 2 classes No Cognitive 41.05 19.06 40.74 26.78 56.34 

  Cognitive 48.50 40.73 40.70 30.22 57.50 

LF/HF 4 classes Baseline 1.75 1.50 1.35 0.56 2.62 

  d2 Attention 1.57 1.20 1.37 0.63 2.29 

  Switcher Task 1.75 1.01 1.52 0.90 2.40 

  Rest 2.98 3.11 1.60 0.91 3.46 

 2 classes No Cognitive 2.37 2.50 1.45 0.78 2.73 

  Cognitive 1.66 1.10 1.46 0.79 2.31 
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Table 5. Leave-one-subject-out cross-validation accuracy for 

each classification model  
Algorithm Accuracy Precision Recall F-1 

Score 

Linear SVM 

(LSVM) 0.607 0.620 0.615 0.617 

Kernel SVM RBF  0.575 0.580 0.575 0.577 

Naïve Bayes 0.542 0.545 0.540 0.542 

k-Nearest 

Neighbor (kNN) 0.500 0.500 0.500 0.509 

Random Forest 

(RF) 0.558 0.560 0.555 0.575 

 

physiological modalities and sensors, including EDA, 

skin temperature, and HRV, while this study focused 

on a single sensor that extracted only HRV indices. A 

more specific device can be easily deployable outside 

laboratory settings. Another explanation may be due 

to the within-subject differences and individual-

specific factors, which might lead to samples being 

misclassified. Furthermore, as mentioned earlier, we 

used the knowledge domain to select HRV features 

instead of feeding all HRV features provided by the 

software. However, our selected HRV features were 

also among the most commonly used in building ML 

models (see Table 2). Nevertheless, we must consider 

non-linear features to improve the model's perfor-

mance [17, 41]. Lastly, because this is our preliminary 

study, we neither utilized data-driven approaches to 

give inputs to a machine learning algorithm nor 

applied feature engineering. Further studies should 

address this issue, for example, by following the 

feature selection method proposed by Gjoreski et al.,. 

[55] and employing complex feature engineering (e.g., 

[4, 26]). 

 

Conclusion 
 

This study explores several machine learning models 

to classify cognitive load states based on HRV signals. 

We found that the prediction accuracies were accept-

able using one single sensor modality. Furthermore, it 

was observed that the Linear Support Vector Machine 

performed the best for binary classification. These 

findings can help to understand and identify, from a 

physiological point of view, the current cognitive state 

of a person. However, this finding should be interpret-

ed with caution since we have not compared it to prior 

similar works, particularly that used only one single 

sensor (Polar H10) and employed in specific cognitive 

functioning tasks (i.e., d2 attention and switcher 

feature). This certainly limits the generalizability of 

the models.  

 

Moreover, one study limitation was that the HRV 

data were exported by default into an R-R file in 

milliseconds. Therefore, raw signals ECG (e.g., QRS) 

were needed to extract more features which allow for 

improved model accuracies either by more complex 

feature engineering or other machine learning 

approaches such as deep learning and neural 

network. Another strategy to improve model accuracy 

is using several epochs or window segments. Since the 

validity and reliability of frequency domains HRV 

required at least a five-minute recording [11], one 

epoch can be produced by overlapping every 30-60 

seconds between the windows. However, it needs a 

longer recording duration; for instance, we need 10 

minutes with overlapping windows of 30 seconds to 

obtain 11 epochs, which unfortunately could not be 

performed in this study due to resource constraints. 

Moreover, the self-report questionnaires filled by the 

subjects can be used to predict the affective state of 

that specific person and be utilized to label a class. 

Further research also needs to investigate whether a 

photoplethysmography (PPG)-the based wearable 

device could produce good models. For example, the 

Empatica e4 wristband could simultaneously gather 

bio-signals data using only one sensor. This device can 

record EDA, body temperature, and blood volume 

pulse from which heart rate, IBI, and HRV are 

derived [56]. Notwithstanding the limitations, our 

study offers insight into further development of 

personal performance monitoring using cognitive 

performance state.  
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