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Abstract: In recent years, the issue of fuel depletion has become a significant problem in the world. 

The logistics sector is one of the sectors with an increase in fuel consumption. Therefore, route 

optimization is one of the attempts to solve the problem of minimization fuel consumption. In 

addition, this problem generally also has time windows. This study aimed to solve the Green 

Vehicle Routing Problem with Time Windows (GVRPTW) using the Camel Algorithm (CA). The 

objective function in this problem was to minimize the total cost of distribution, which involves the 

cost of fuel consumption and the cost of late delivery. The CA parameter experiment was conducted 

to determine the effect of the parameter on distribution cost and the computation time. In addition, 

this study also compared the CA algorithm's performance with the Local search algorithm, Particle 

Swarm Optimization, and Ant Colony Optimization. Results of this study indicated that the use 

of Camel population parameters and the total journey step affected the quality of the solution. 

Furthermore, the research results showed that the proposed algorithm had provided a better total 

distribution cost than the comparison algorithm. 

 

Keywords: Vehicle routing problem with time windows, fuel consumption, green vehicle routing 

problem, camel algorithm. 
  

 
Introduction 

 

In recent years, the logistics sector has played an 

essential role in various aspects such as industry, 

economy, and the environment [1, 2]. In the economic 

aspect, route determination is used to find optimal 

solutions to reduce logistics distribution costs and 

fulfill customer demands [3, 4]. This problem is 

famously called the Vehicle Routing Problem (VRP) 

[5]. In some cases, customers have operating and 

service times (open and close) that encourage com-

panies to meet their demands on time windows. This 

problem is known as the Vehicle Routing Problem 

with Time Windows (VRPTW) [6]. Some VRPTW 

problems are that product demand is sent past the 

time window, which causes the company to be given a 

penalty for late delivery costs [7]. On-time delivery can 

affect loyalty and customer satisfaction, increasing 

company profitability [8]. Therefore, the delivery must 

be made quickly [9, 10] since it also impacts on 

reducing fuel and increases delivery times [11]. 

According to Moghdani et al. [12], reducing fuel con-

sumption problems in VRP is classified as Green 

Vehicle Routing Problem (GVRP) since it concerns the 

depletion of fuel reserves. The literature review 

results have conducted by Lin et al. [13], and 

Moghdani, Salimifard [12] show that research on VRP 

and GVRP continues to increase every year. 
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Researchers have investigated several GVRP studies 

that focus on minimizing fuel consumption. Xiao et al. 

[13] showed that fuel consumption significantly 

affects total transportation costs on the Capacitated 

VRP (CVRP) problems. Psychas et al. [15] inves-

tigated the minimization of travel time and fuel 

consumption. Furthermore, Zhang et al. [16] solved 

the problem of CVRP under three-dimensional load-

ing constraints that assume that fuel consumption is 

proportional to the vehicle's total weight. Niu et al. [17] 

studied the problem of minimizing fuel consumption 

in the urban network by proposing A hybrid tabu 

search algorithm. Besides, Rao et al. [18] investigated 

the fuel minimization problem by considering the road 

gradient. In the GVRP problem, several studies have 

been published to solve this issue by offering a new 

algorithm effectively. Zulvia et al. [19] proposed a 

gradient evolution algorithm procedure for multi-

objective optimization. Their research aimed to opti-

mize the operational cost, deterioration cost, carbon 

emissions, and customer satisfaction. Macrina et al. 

[20]  proposed an iterative local search heuristic algo-

rithm to minimize vehicle energy. Yu et al. [21] offered 

a branch and bound procedure to minimize costs for 

the heterogeneous fleet green vehicle routing problem 

with time windows. Some of the other proposed 

metaheuristic procedures include Evolutionary Algo-

rithm [22], Artificial Bee Algorithm [23, 24], PSO [25], 

ACO [26], as well as for Simulated Annealing [13, 27]. 
 

According to generalized combinatorial optimization 

problems, the GVRP is categorized as a Non-

Polynomial-hard optimization problem [28, 29]. It 
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cannot be solved in polynomial time [30], and several 

VRP, VRPTW, and GVRP studies have used Exact, 

heuristic, and metaheuristic approaches to solve the 

problem [12, 13, 31, 32]. However, the exact method 

often performs poorly compared to other procedures 

[33]. This procedure takes a very long time to find the 

optimal, feasible solution for small instances. 

Moreover, this procedure is not proper to find a 

solution in medium and large instances. The 

popularity of this procedure is due to heuristic and 

metaheuristic procedures having good flexibility in 

solving complex problems [33, 34]. Researchers have 

proposed several procedures in the VRPTW problem 

to minimize penalties time and minimize travel 

distance. Several proposed procedures were presented 

to minimize penalties time, such as Genetic Algorithm 

[35] and Improved Genetic Algorithm [36]. Several 

procedures have also been implemented to minimize 

travel distance, such as the hybrid Particle Swarm 

Optimization (PSO) [37], Ant Colony Optimization 

(ACO) [38], Memetic Algorithm [39], and Evolutio-

nary Scatter Search PSO [40].  

 

Based on previous studies, one of the attractive 

VRPTW models was proposed by Hu et al. [37]. 

Unfortunately, the proposed VRPTW model only 

considers delivery and late penalties costs that ignore 

fuel consumption costs. Based on this deficiency, this 

study tries to develop the model proposed by Hu et al. 

[37] by considering the fuel consumption cost. We 

called this problem a Green Vehicle Routing Problem 

with Time Windows (GVRPTW) because this problem 

considers the fuel consumption cost. Based on the 

description above and the literature review Moghdani 

et al. [12], this problem rare attention from 

researchers. In addition, one of the new interesting 

new algorithms to investigate is Camel Algorithm 

(CA). The CA is a new algorithm proposed by  Ali  et 

al. [41] that imitates a camel's journey in the desert. 

This algorithm has been successfully applied in 

several fields, such as estimating solar photovoltaic 

modules [42] and optimizing speed controller 

structure [43]. Some of these studies apply the CA 

algorithm to solve continuous problems. Unfor-

tunately, there is no CA research to solve discrete 

space problems like combinatorial optimization. 

Therefore, this study tried to minimize the total 

distribution costs in GVRPTW involving fuel and late 

delivery costs using Camel Algorithm (CA). In this 

study, the CA is modified to solve GVRPTW, classified 

as a combinatorial problem. This study's motivations 

are described as follows: (1) Research to minimize the 

total distribution costs involving fuel and late delivery 

costs, which researchers rarely investigate; and (2) 

There has been no research on VRPTW problems that 

utilize the CA algorithm. 

 

Based on the description of the research motivations 

above, this study proposes a modified CA algorithm to 

solve GVRPTW. The objective function of this 

research is to minimize the total distribution costs 

involving fuel consumption and late delivery costs. 

This research-based is on case study on distribution 

companies in Indonesia. Hence, The main contribu-

tion of this research is to provide the latest theoretical 

development by proposing a new CA algorithm for the 

GVRP solution, especially GVRPTW. The second 

contribution is to provide real solutions to companies 

in decision-making about GVRPTW problems. To the 

best of our knowledge, no study has implemented CA 

procedures to solve the GVRPTW problem to mini-

mize the total distribution costs involving fuel 

consumption and late delivery costs. Therefore, this 

research is expected to impact GVRPTW problem-

solving significantly. 

 

Methods 
 

Assumptions, Notations, and Problem 

Descriptions 
 

This section describes the assumptions, notations, and 

problem descriptions of the GVRPTW problem. The 

GVRPTW problem studied assumptions are: (1) The 

vehicle has a speed dependent from node to node and 

varies. (2) The vehicle departs and ends at the depot 

(distribution center) that defined as node 0. (3) 

Demand for each customer is fixed. (4) The model 

being developed has one depot. (5) Late penalty 

delivery costs, fuel prices, and fixed delivery costs are 

fixed. (6) The product weight is insignificant, so the 

load does not affect fuel consumption. (6) Each 

customer has a definite service time. 
 

Notations used in the GVRPTW problem is presented 

as follows: 

 

Parameter index 

𝑖, j :  index for node (customer) 

 

Variable 

𝐾  :  total vehicle 

𝐿 :  total customer 

𝑑𝑖𝑗 :  distance from node 𝑖 to node 𝑗 

𝐿𝐶𝑇 :  late delivery cost per unit time (IDR per hour) 

𝐶𝑓 :  fuel prices (IDR) 

𝐿𝑃𝐾 :  rate of fuel consumption per kilometer (liter) 

𝐿𝑘 :  load time on vehicle 𝑘 

𝑠𝑗 :  arrival time of the vehicle for customer 𝑗 

𝑠𝑖 :  arrival time of the vehicle for customer 𝑖 
𝑤𝑖 :  waiting  time of the vehicle for customer 𝑖 
𝑉𝑒𝑖𝑗 :  vehicle speed from node 𝑖 to node 𝑗 

𝑆𝑇𝑖𝑘 :  service time of node (customer) 𝑖 by vehicle 𝑘  

𝐸𝑇𝑗 : opening time at node 𝑗 
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𝐿𝑇𝑗 :  closing time at node 𝑗 

𝑞𝑘 :  capacity vehicle 𝑘 

𝑔𝑖 :  demand from the customer 𝑖 
𝑇𝐷𝐶 :  total distribution cost 

 

Decision variable 
𝑥𝑖𝑗𝑘  : a binary variable that shows the journey from 𝑖-

th consumer to 𝑗-th consumer by 𝑘-th vehicle 
𝑦𝑘𝑖  : a binary variable that shows  vehicle 𝑘 serve 

customer 𝑖 
 
The GVRPTW problem is studied to minimize the 
total distribution cost that involves fuel consumption 
costs and late delivery costs. This GVRPTW problem 
is classified as soft time windows. It is based on the 
consumer receiving the delivery even though it is not 
following the time windows. However, the consumer 
provides a late penalty fee. The mathematical model 
for the VRPTW problem in this study is developed 
based on Hu et al. [37]. It is presented as follows: 
 

Objective function 

𝑚𝑖𝑛 𝑇𝐷𝐶 = ∑ ∑ ∑ 𝐶𝑓. 𝐿𝑃𝐾.𝐾
𝑘=1

𝐿
𝑗=0

𝐿
𝑖=0 𝑑𝑖𝑗. 𝑥𝑖𝑗𝑘  

   + ∑ (𝑚𝑎𝑥(0, (𝑠𝑗 − 𝐿𝑇𝑗))). 𝐿𝐶𝑇𝐿
𝑗=1                  (1) 

 
Subject to 
∑ 𝑔𝑖. 𝑦𝑘𝑖 ≤ 𝑞𝑘

𝐿
𝑖=0 , ∀ 𝑘 = 1 , … , 𝐾                  (2) 

∑ 𝑦𝑘𝑖 = 1𝐾
𝑘=1 , 𝑖 = 1 , … , 𝐿                                 (3) 

∑ 𝑦𝑘0 = 𝐾𝐾
𝑘=1                     (4) 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑘𝑗
𝐿
𝑖=0 , 𝑗 = 0,1, … 𝐿 ; ∀ 𝑘 = 1 , … , 𝐾                (5) 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑘𝑖
𝐿
𝑗=0 , 𝑖 = 0,1, … 𝐿 ; ∀ 𝑘 = 1 , … , 𝐾                  (6) 

𝐿𝑘 + (𝑠𝑖 + 𝑤𝑖 + 𝑆𝑇𝑖𝑘 +
𝑑𝑖𝑗

𝑉𝑒𝑖𝑗
). 𝑥𝑖𝑗𝑘 = 𝑠𝑗 ,      

𝑖 = 0,1,2, … 𝐿;  𝑗 = 0,1,2, … 𝐿;  ∀ 𝑘 = 1 , … , 𝐾                   (7) 

𝑤𝑖 =  𝑚𝑎𝑥(0, (𝐸𝑇𝑗 − 𝑠),     𝑖 = 0,1, … 𝐿                                 (8) 

𝑥𝑖𝑗𝑘  ∈ [0,1],                 

𝑖 = 0,1,2, … 𝐿;  𝑗 = 0,1,2, … 𝐿;  ∀ 𝑘 = 1 , … , 𝐾                  (9) 
𝑦𝑘𝑖  ∈ [0,1], 𝑖 = 0,1,2, … 𝐿;  ∀ 𝑘 = 1 , … , 𝐾                    (10) 

 

The objective function of this problem is to minimize 
the total distribution cost (TDC) formulated in 
Equation (1). It has two parts described: the first part 
describes the fuel consumption costs, and the second 
part presents the late delivery costs. Constraint (2) 
states that the cumulative demand of all customers on 
a route cannot exceed the vehicle's capacity. 
Constraints (3) and (4) state that each customer must 
be provided with a delivery service. Each customer's 
service can only be completed by a specific vehicle, as 
defined by Constraint (5) and (6): Equations (7) and (8) 
define the time window constraints. Finally, 
constraints (9) and (10) state that the decision variable 
𝑥𝑖𝑗𝑘 and  𝑦𝑘𝑖 are a binary number. 

 

Proposed Camel Algorithm Procedure 
 

This section discusses the proposed CA algorithm for 

solving GVRPTW problems. This study modified the 

CA algorithm proposed by Ali et al. [41]. The previous 

CA algorithms were used to solve continuous pro-

blems. Therefore, the CA algorithm needs to be 

modified to be used to solve combinatorial problems in 

GVRPTW. This study proposes three (3) main stages 

of a CA algorithm to solve GVRPTW. The complete 

CA stages are as follows: (1) initialization of camel 

location; (2) application of the Large Rank Value 

procedure to convert camel positions to the travel 

sequence; and (3) An update of the camel position. The 

pseudo-code of the proposed CA procedure can be 

presented in Algorithm 1. Details of the three main 

steps of the CA algorithm to solve GVRPTW are 

described in the following sub-section.  

 

Initialization of the Camel Location 

 

In the camel initialization position stage, the CA 

algorithm parameters are selected to solve the 

GVRPTW problem. The parameters used are total 

camel caravan (𝑁), journey steps (𝑖𝑡𝑒𝑟), maximum 

temperature, minimum temperature, and visibility 

value. In this study, the dimension (𝑑) of the camel's 

position is based on the number of GVRPTW problem 

nodes. The initial position of the camel is generated 

randomly from several camel caravans and some 

nodes (𝐷). The upper and lower limits camel's value is 

determined to establish the camel's location. Determi-

nation of the initialization of the camel location is 

presented in Equation (11). 𝑋𝑑𝑖 formulates the 

location for camel 𝑖 in vector 𝑑, where 𝑖 =  1, 2, … , 𝑁, 

and 𝑑 =  1, 2, … , 𝐷. 𝑋𝑚𝑎𝑥 present the upper limit of 

the camel caravan position. 𝑋𝑚𝑖𝑛 is the lower limit of 

the camel caravan position. 𝑅𝑎𝑛𝑑 is a random number 

with uniform distribution with a range of values 

between 0 and 1.  

 

Xdi = (Xmax − Xmin)Rand + Xmin                                 (11) 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [
1,21     3,92     1,71     2,18
6,51     3,54     3,24     6,16
8,57     2,99     7,56     7,94

 ]  (a)     

 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [
2,18     3,92     1,18     1,18
6,51     3,54     6,16     6,16
8,57     8,57     7,56     7,94

 ]  (b) 

 
Figure 1. Position of each camel in the population (a) 

Accepted camel population; (b) Rejected camel population 

 

Figure 1 presents the vector position camel in the 

population for four customer nodes and three camel 

caravans. The position of each camel caravan in the 

population vector position is generated based on 

Equation (9). At this stage, the camel i is ensured that 

there is no repetition for each d. An illustration of the 

camel population is presented in Figure 1. In Figure  

1a, the camel population can be accepted if each camel 

has not the same value in one (1) population. 
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The camel population in Figure 1b is unacceptable 

because each camel has the same value in one (1) 

population. Repeating values on position camels 

should be avoided to facilitate the conversion of camel 

positions to travel sequences. The same value in the 

position vector of a camel caravan can hamper 

conversion camel position to travel order. The 

procedure for converting camel positions to travel 

sequences is presented in the next section. 

 

Implementation of Large Rank Value  

 

This study proposed the Large Rank Value (LRV) 

procedure to transform the position of each camel into 

travel sequences. LRV is a straightforward procedure 

for converting a position vector into a combinatorial 

problem [44, 45,46,47,47,49]. As previously described, 

GVRPTW is a combinatorial problem. Therefore, the 

continuous numbers on the camel positions need to be 

converted into a travel sequence. The principle of LRV 

is to order the d positions of each camel from largest to 

smallest. This principle is famous because it 

effectively converts a continuous number to a travel 

sequence [31, 32, 50]. 

An illustration of the application of LRV is shown in 

Figure 2. In Figure 2a, the position vector of a camel 

caravan does not have the same value. Therefore, the 

travel sequence is generated correctly. However, in 

Figure 2b, the position vector of a camel caravan has 

the same value. Hence, the travel sequence conversion 

is incorrect. In this illustration, four customers are 

visited by vehicles. A camel will have a position vector 

of several customers (in this illustration, it is four 

customers). This vector position will update each 

iteration according to the camel position update. For 

example, in Figure 2 (a), the position vectors for 

customer 1 to customer 4 are 1.21, 3.92, 1.71, and 2.18. 

By applying LRV, the travel sequence for this camel is 

customers 2, 4, 3, and 1. Therefore, the same value 

must avoid the value of the position vector of a camel. 

Therefore, it affects the conversion sequences. In 

Figure 2 (b), the vector position on customer 3 has the 

same value, namely 1.18. It will be a problem when 

LRV is applied because customers 3 and 4 have the 

same order. The travel order becomes customer 2, 1, 

and 3. Therefore, the value of the camel position vector 

must be avoided with the same value. Furthermore, 

the results of LRV are used to determine the number  

1.21 3.92 1.71 2.18

Cust 2 Cust 4 Cust 3 Cust 1

2.18 3.92 1.18 1.18

Cust 2 Cust 1 Cust 3 Cust 3

Apply LRV Apply LRV

(a) Correct Travel Sequence (b) Wrong Travel Sequence

Cust 1 Cust 2 Cust 3 Cust 4Customers (Cust)

Vector position of a camel 

Cust 1 Cust 2 Cust 3 Cust 4

Travel sequence

 
Figure 2. Implementation of LRV 

 

1.21 3.92 1.71 2.18

2 4 3 1

Caravan 

Position

Travel sequence 

Based on LRV

1 2 3 4

6 10 7 8

Set Customer

Demand

2 4 DepotDepot 3 1 DepotDepot

Route 1 Route 2

Vehicle Capacity = 20

Capacity = 20

 
Figure 3. Illustration of determining the route of each camel 
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of routes. It needs to be done because the vehicle has 

the capacity limit. 

 

Moreover, demand fulfillment cannot be fulfilled in 

one trip. The route determination illustration of each 

camel is shown in Figure 3. In this illustration, there 

are customers with varying demands. LRV is applied 

to convert the caravan position to a travel visit based 

on the camel caravan position. The results show that 

the travel sequence for this camel is customers 2, 4, 3, 

and 1. However, because the vehicle has a capacity 

limit, four customers are not delivered in the same 

vehicle. Therefore, based on capacity considerations, 

there are two routes or vehicles to solve this problem. 

This procedure is used in the initialization stage and 

updates the position in each iteration. The route 

produced by each camel is used as input for fitness 

calculations. The calculation of the fitness value for 

each camel is based on Equation (1). 

 

Camel Position Update 

 

This section describes the procedure for updating the 

position of each camel. As described by Ali et al. [41], 

camel travel is affected by the ambient temperature. 

Therefore, the ambient temperature affects the 

camel's resistance to travel. On a trip to a certain 

location, the camel undergoes temperature changes, 

giving rise to a different level of camel resistance for 

each camel. Therefore, the camel position update is 

influenced by the maximum ambient temperature 

(𝑇𝑚𝑎𝑥), the minimum ambient temperature (𝑇𝑚𝑖𝑛), 

and the visibility value (𝑣). Therefore, the camel 

temperature on each camel and iteration have 

different values. The formula for determining the tem-

perature of the camel in each iteration is presented in 

Equation (12). 𝑇𝑑𝑖,𝑖𝑡𝑒𝑟 indicate the temperature of 

camel i in each iteration 𝑖𝑡𝑒𝑟. 𝑖𝑡𝑒𝑟 = 1, 2, 3… is total 

journey steps. 𝑅𝑎𝑛𝑑 is a random number with 

uniform distribution with a range of values between 0 

and 1.  

 

Tdi,iter = (Tmax − Tmin)Rand + Tmin                        (12) 

 

Different temperatures in each location affect the 

resistance (𝐸) of the camel. Therefore, the camel 

endurance at each iteration is modeled in Equation 

(13). 𝐸𝑑𝑖,𝑖𝑡𝑒𝑟  shows the endurance of camel 𝑖 from 

iteration 𝑖𝑡𝑒𝑟, where 𝑖𝑡𝑒𝑟 = 1,2,3…total journey steps. 

 

Edi,iter  = 1 −
(Tdi,iter−Tmin)

(Tmax−Tmin) 
               (13) 

 

In search of grass areas, camels' sight in the desert is 

often blocked by sand dunes. Therefore, some camels 

cannot update the route to the areas of grass that 

other camels found. Two scenarios are proposed for 

updating the camel's location. In scenario 1, when the 

visibility of camel i in an iteration is greater than the 

visibility threshold (v), the camel position updating 

uses Equation (14). The visibility value of camel i in 

an iteration is denoted as 𝑣𝑖,𝑖𝑡𝑒𝑟 which is generated 

from random numbers 0 to 1. 𝑋𝑑𝑏𝑒𝑠𝑡 is the best 

location for all previous iterations. 

  

𝑋𝑑𝑖,𝑖𝑡𝑒𝑟 =  𝑋𝑑𝑖,𝑖𝑡𝑒𝑟−1 + 𝐸𝑑𝑖,𝑖𝑡𝑒𝑟 (𝑋𝑑𝑏𝑒𝑠𝑡 −  𝑋𝑑𝑖,𝑖𝑡𝑒𝑟−1)   (14) 

Algorithm 1. Camel Optimization algorithm pseudo-codes. 

Begin 

Step 1: Initialization: Set parameters CA such as Tmin, Tmax,  Number camel caravan size, the visibility threshold, and 

Initialize the location of each camel from Eq. (9). 

Step 2: Convert the location of each camel using LRV; determine the fitness value of each camel using equation 1; Determine 

the current best location and fitness in the initial solution. 

Step 3: While (𝑖𝑡𝑒𝑟 < 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑢𝑟𝑛𝑒𝑦 𝑠𝑡𝑒𝑝) do 

For i=1: Number Camel Caravan size 

 Compute the temperature of camel (𝑇𝑑𝑖,𝑖𝑡𝑒𝑟) using Equation (10). 

 Compute the endurance of camel (𝐸𝑑𝑖,𝑖𝑡𝑒𝑟) using  equation   (11) 

 If 𝑣𝑖,𝑖𝑡𝑒𝑟 (random number between 0 to 1) < visibility threshold then 

 Update the camel position using equation (12) 

 Else 

 Update the camel position using equation (9) 

 End If 

    End for 

Convert location camel to travel sequence using LRV and determine the total distribution cost in each 

camel. 

 If  fitness the new locations is better than the older one 

  The new best is the global best and save the best solution (fitness and location) 

 End If 

 Assign new visibility for each camel 

Step 4: End While 

Step 5: Output the best solution 

End 
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In the second scenario, the location update process 

occurred when 𝑣𝑖,𝑖𝑡𝑒𝑟 <  𝑣.  In this scenario, the camel 

randomly updated its location based on Equation (9). 

Each position update is converted into a sequence 

with the LRV principle presented in the previous 

subsection in every iteration. The camel's new position 

is evaluated with the previous solution. Suppose the 

camel's new location has better fitness than the 

previous. In that case, the camel's new location is 

chosen as the best solution. However, if the previous 

solution has better fitness results, the previous 

solution is the best. The process of updating this 

position continued until the specified number of 

journey steps is reached. 
 

Results and Discussions 
 

Data and Experiment Procedure 
 

Data Collection 
 

The data collection of this research was based on case 

studies on distribution companies in Indonesia. The 

company has one Distribution Center (DC), which 

fulfills 19 nodes (customers). The distance matrix data 

is presented in Table 1. Vehicle speed matrix data is 

presented in Table 2. The vehicle capacity to deliver 

was 40 units. The costs used in this study were fuel 

costs and late delivery costs per hour. The fuel cost (fc) 

was IDR 7,650 per liter. The late delivery cost (Cl) was 

IDR 15,000 per hour. Demand data, customer opening 

times, and service time for each customer are 

presented in Table 3. The rate of fuel consumption per 

kilometer (LPK) was 0.0250 kilometers per liter. The 

load time for each item transported was 0.0017 hours. 

The company had its opening times at 11:00 am. 

 

Experiment Procedure 
 

This study utilized two main parameters of the CA 

algorithm: the number of camel population (N) and 

the total journey step of the camel (𝑖𝑡𝑒𝑟). The selection 

of parameters is based on the research of Omran et al. 

[43], which states that the CA algorithm produces the 

best solution at the journey step of the camel (𝑖𝑡𝑒𝑟) 

and the Camel population of 100. Hence, we tried to 

investigate several population variations and journey 

steps to complete GVRPTW. Camel population para-

meters and total journey steps (𝑖𝑡𝑒𝑟) consisted of 

three-level parameters: the 10, 50, and 100. Other 

determined parameters were Visibility (v) = 0.1, Tmax 

= 100, and Tmin = 10. This study examined the effect 

of camel population parameters and total journey 

steps on total distribution costs. 

 

Table 1. Customer distance matrix data (kilometers). 
Node DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

DC 0 1.1 5.4 1.6 2.8 4.9 2.2 2.4 4.3 4 4.1 3.2 3.7 1.6 5.7 5.7 4.5 3.1 5.2 2.1 

1 1.1 0 5.4 2.6 3.3 3.8 1.1 3.2 4.7 4.4 3.1 3.5 4.5 1.4 3.6 6 3.5 2 4.1 6.1 

2 5.4 5.4 0 3.1 3.4 2.6 5.5 3 3.8 2.8 3.5 2.7 4.2 5.9 4.1 3.1 3 6.5 2.4 3.1 

3 1.6 2.6 3.1 0 1.5 4.1 3.5 1.2 3.1 3 5.5 1.7 1.4 3.9 1.4 4.6 4.5 4.5 3.8 4.6 

4 2.8 3.3 3.4 1.5 0 4.2 4.6 1 2 2.8 6.6 1.1 1.3 4.9 1.9 4.4 4.5 5.5 3.9 4.4 

5 4.9 3.8 2.6 4.1 4.2 0 4.5 4.1 4.9 3.9 1 3.7 5.3 3.5 5.1 5.7 0.4 2.8 0.3 5.8 

6 2.2 3 5.5 3.5 4.6 4.5 0 5.4 5 4.7 2.8 3.8 4.8 1.2 6.3 6.3 3.2 1.8 3.8 3 

7 2.4 3.2 3 1.2 1 4.1 5.4 0 2.1 2.4 4.8 0.9 1.4 4.6 1.6 4.4 4.3 5.2 3.6 4.1 

8 4.3 4.7 3.8 3.1 2 4.9 5 2.1 0 2.5 6 1.3 1.5 6.2 3.5 3 5.4 6.8 4.8 3.3 

9 4 4.4 2.8 3 2.8 3.9 4.7 2.4 2.5 0 4.5 2.4 3.7 5.6 3.9 1.6 3.9 6.2 3.3 1.6 

10 4.1 3.1 3.5 5.5 6.6 1.5 2.8 4.8 6 4.5 0 4.6 6.2 2.8 6.8 6.6 0.7 2.1 1.2 6.7 

11 3.2 3.5 2.7 1.7 2.1 3.7 3.8 0.9 1.3 2.4 4.6 0 1.4 4.8 2.1 3.6 4.1 5.4 3.5 3.9 

12 3.7 4.5 4.2 1.4 1.3 5.3 4.8 1.4 1 3.7 6.2 1.4 0 5.8 2.8 3.5 5.4 6.4 4.8 3.9 

13 1.6 1.4 5.9 3.9 4.9 3.5 1.8 4.6 6.2 5.6 2.8 4.8 5.8 0 7.3 7.3 2.9 1.5 3.6 3.7 

14 2.1 3.6 4.1 1.4 1.9 5.1 6.3 1.6 3.5 3.9 6.8 2.1 2.8 7.3 0 2.3 5.6 6.9 5 4.5 

15 5.7 6 3.1 4.6 4.4 5.7 6.3 4.4 3 1.6 6.6 3.6 3.5 7.3 1 0 5 6.9 4.4 2.1 

16 4.5 3.5 3 4.5 4.5 0.7 3.2 4.3 5.4 3.9 0.7 4.1 5.4 2.9 5.6 5 0 5.8 0.7 3.7 

17 3.1 2 6.5 4.5 5.5 2.8 1.8 5.2 6.8 6.2 2.1 5.4 6.4 3 6.9 6.9 5.8 0 3 4.7 

18 5.2 4.1 2.4 3.8 3.9 0.7 3.8 3.6 4.8 3.3 1.2 3.5 4.8 3.6 5 4.4 0.8 3 0 3 

19 5.7 6.1 3.1 4.6 4.4 5.8 3 4.1 3.3 1.6 6.7 3.9 3.9 3.7 4.5 2.2 3.7 4.7 3 0 

 
Table 2. Vehicle speed matrix data. 

Node DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

DC 0 37 39 30 36 33 32 32 36 40 35 35 39 40 37 35 39 34 39 30 

1 37 0 39 39 37 30 30 31 36 35 35 35 32 31 35 36 39 40 30 30 

2 39 39 0 36 30 30 39 40 34 32 38 36 35 37 35 40 32 38 31 33 

3 30 39 36 0 30 30 39 30 34 32 38 36 35 37 35 40 32 38 31 33 

4 36 37 30 30 0 30 35 30 37 32 37 30 40 31 35 32 37 32 38 34 

5 33 30 30 30 30 0 33 39 38 32 30 36 37 33 35 34 30 36 37 32 

6 32 30 39 39 35 33 0 36 30 36 39 30 30 30 38 40 31 38 36 40 

7 32 31 40 30 30 39 36 0 40 32 38 30 35 30 30 30 40 40 34 39 

8 36 36 34 34 37 38 30 40 0 33 39 32 34 31 31 38 38 34 30 32 

9 40 35 32 32 32 32 36 32 33 0 37 30 32 38 32 35 36 35 33 36 

10 35 35 38 38 37 30 39 38 39 37 0 35 36 39 30 33 39 35 38 36 

11 35 35 36 36 30 36 30 30 32 30 35 0 30 37 34 33 35 34 30 33 

12 39 32 35 35 40 37 30 35 34 32 36 30 0 33 39 38 31 37 36 38 

13 40 31 37 37 31 33 30 30 31 38 39 37 33 0 36 33 37 30 31 31 

14 37 35 35 35 35 35 38 30 31 32 30 34 39 36 0 34 40 37 36 33 

15 35 36 40 40 32 34 40 30 38 35 33 33 38 33 34 0 39 32 30 31 

16 39 39 32 32 37 30 31 40 38 36 39 35 31 37 40 39 0 31 30 34 

17 34 40 38 38 32 36 38 40 34 35 35 34 37 30 37 32 31 0 37 33 

18 39 30 31 31 38 37 36 34 30 33 38 30 36 31 36 30 30 37 0 32 

19 30 30 33 33 34 32 40 39 32 36 36 33 38 31 33 31 34 33 32 0 
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Table 3. Customer demand data and time windows. 

Node Demand 
Time Windows Service Time 

(Hour) Open Closed 

1 6 11.00 12.00 0.050 

2 6 11.00 12.30 0.050 

3 5 11.00 12.30 0.033 

4 5 11.00 12.30 0.033 

5 5 11.00 12.30 0.033 

6 3 11.00 12.00 0.033 

7 3 11.00 13.00 0.033 

8 6 11.00 13.00 0.050 

9 4 11.00 14.00 0.033 

10 7 11.00 12.00 0.050 

11 3 11.00 12.30 0.033 

12 4 11.00 12.30 0.050 

13 4 11.00 12.30 0.033 

14 5 11.00 13.00 0.050 

15 4 11.00 12.30 0.042 

16 5 11.00 12.30 0.042 

17 3 11.00 12.30 0.033 

18 6 11.00 12.00 0.050 

19 7 11.00 14.00 0.058 

 
In addition, the influence of parameters on distri-

bution cost structure such as fuel and late delivery 

costs was also investigated. In this experiment, the 

combination parameter was repeated three times. 

Hence, 27 experiments were conducted to investigate 

the effect of these parameters on distribution costs. 
The minimum total distribution cost is the optimal 

total distribution cost from the experiment. 
 

Furthermore, this study attempted to investigate the 

effect of CA algorithm parameters on computation 

time. Computation time was one of the performances 

needed to solve the GVRPTW problem. Therefore, a 

sensitivity analysis was also provided to examine 
changes in the variable to distribution costs. The 

sensitivity analysis experiment was based on the best 

solution selected from the parameter experiment. The 

experiment included the effect changes in Loading 

time (Lt), LKP, fuel prices, and Service time (St) on 

distribution costs. Seven different data variations 

were used in the sensitivity analysis in the experi-
ment. 
 

To measure the performance of the algorithm, this 

study compared the proposed CA algorithm with the 

Local Search algorithm [20], PSO [37], and ACO [38]. 

Ten nodes divided into 3 cases (small, medium, and 

large) were used as experimental. In the small case, 

this study used variations of nodes 10, 15, 19, and 20. 
Variations of nodes 30, 40, and 50 were applied to the 

medium case. In the large case, this study used four 

variations of nodes such as 60, 40, 80, and 100. Data 

was produced from generating random numbers from 

those presented in Table 1, Table 2, and Table 3.  
 

Relative Error Percentage (REP) was used to assess 

performance, as shown in Equation (15). A positive 

REP indicated that the proposed algorithm outper-

formed the others. However, when compared to other 

algorithms, the proposed algorithm has a negative 

REP, indicating that it is not competitive. The Cost 

Ratio (CR) is also used to evaluate the algorithms' 

performance. The CR is calculated by dividing the 

proposed algorithm's cost by the cost of other 

algorithms (Equation 16). Finally, the comparison 

algorithm is tested using the Wilcoxon Test based on 

CR via SPSS 21. This research utilized the Matlab 

R2014a software run on a processor core i5, 500 Gb 

Hard disk, 4Gb memory on Microsoft Windows 10. 

𝑅𝐸𝑃 =
𝐶𝑜𝑠𝑡𝑂𝑡ℎ𝑒𝑟_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
× 100%         (15) 

𝐶𝑅 =
𝐶𝑜𝑠𝑡 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

𝐶𝑜𝑠𝑡 𝑜𝑡ℎ𝑒𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
                                (16) 

 

Effect of CA parameters on costs 

 

This section presents the experimental results of the 

CA parameter's effect on total distribution costs. The 

experimental results are shown in Table 4, indicating 

that the total distribution cost is small when the camel 

population and the total travel steps are large.  

Conversely, the total distribution cost increases when 

the camel population and the total journey step are 

smaller. It is reasonable because the number of 

populations and the total journey steps camels large 

resulted in many solutions. Three experiments in each 

parameter population and total journey step show 

that the results of each trial produce different total 

cost distributions. The optimal solution for solving the 

problem of 19 customers from the case study resulted 

in 13,518 IDR. It shows that in the jurney step and 

population of 100, the algorithm provides an optimal 

solution. These results are in accordance with the 

research by  Omran et al. [43].  

 

The experimental result of the CA algorithm para-

meters on fuel costs is presented in Table 5. Table 6 

describes the result of the effect of parameters of the 

CA algorithm on late delivery costs. Furthermore, 

these show decreasing fuel costs and late delivery 

costs if the camel population and total journey steps 

are increased. These results proved that fuel and late 

delivery cost is influenced by the camel population and 

the total journey step. Therefore, the number of camel 

populations and the total journey step could minimize 

the total distribution cost. This study's results are 

consistent with Coelho, et al. [49], which explained 

that the algorithm parameter affects the total cost of 

distribution. In addition, three experiments in each 

parameter population and total journey step show 

that the results of fuel cost and late delivery costs 

algorithm has random characteristics in solving 

problems suitable for solving the GVRPTW problem. 
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Table 4. Effect of parameters of the CA algorithm on TDR 

(in IDR). 

Population Experiment 
Total journey step 

10 50 100 

10 

1 40,098 40,750 30,121 

2 37,822 33,093 29,909 

3 26,042 28,656 25,722 

50 

1 33,708 30,850 26,668 

2 22,821 29,727 20,253 

3 27,926 21,097 20,852 

100 

1 30,796 27,971 20,173 

2 24,175 21,592 18,284 

3 21,265 14,733 13,518 

 
Table 5. Effect of parameters of the CA algorithm on fuel 

costs (in IDR). 

Population Experiment 
Total journey step 

10 50 100 

10 

1  9,505 11,054  9,180 

2 11,191 10,959  9,180 

3 10,784 10,155 10,442 

50 

1 10,787  9,715  9,237 

2 10,366  9,390  9,811 

3  9,046  9,505  9,237 

100 

1 11,073 10,175 10,002 

2 11,117  9,352 10,232 

3 8,988  9,128    9,887 

 
Table 6. Effect of parameters of the CA algorithm on late 

delivery costs (in IDR). 

Population Experiment 
Total journey step 

10 50 100 

10 

1   30,593    29,696    20,941 

2   26,631    22,134    20,729  

3   15,294    18,500    15,280  

50 

1   22,921    21,135    17,431  

2   12,548    20,337    10,442  

3   18,880   11,706    11,615  

100 

1   19,723    17,796    10,171 

2   13,058    12,240   8,052  

3   12,276  5,519  3,630  

 

Table 7. Effect of camel population and total journey step on 

computation time (second). 

Population Experiment 
Total journey step 

10 50 100 

10 

1 0.06 0.25 0.49 

2 0.06 0.26 0.49 

3 0.09 0.26 0.49 

50 

1 0.28 1.31 2.72 

2 0.33 1.30 2.61 

3 0.29 1.31 3.84 

100 

1 0.56 2.54 4.82 

2 0.52 3.75 5.23 

3 0.59 2.73 5.83 

 

Effect of CA Parameters on Computation Time  
 

This section describes the experimental results of 

population size and the total jour-ney camel para-

meters on computation time. The results of the 

experiment are shown in Table 7. It shows that the 

variation in the population and the total journey step 

camel affected the computation time of the GVRPTW. 

The computation time is directly proportional to the 

population and the total journey step camel. When the 

camel population and the total journey step are 

greater, the computation time is higher. Conversely, 

When the camel population and the total journey step 

are smaller, the computation time is lower. It is 

reasonable because the more camel population and 

the total journey step, the more variations in the 

solution search, which causes the computation time to 

increase. 

 

Sensitivity Analysis 

 

The results of the sensitivity analysis experiment are 

presented in this section. The variables tested for the 

sensitivity analysis included loading time (𝐿𝑡), liters 

per kilometer (𝐿𝐾𝑃), fuel costs (𝐶𝑓), and service time 

(𝑆𝑡). In addition, these were used to examine the effect 

of changing variables on costs and total distribution 

cost. The results of the sensitivity analysis are 

presented in the following section. 

 

Effect of loading time (Lt) on the total cost 

distribution 

 

The effect of the change in 𝐿𝑡 on the costs is presented 

in Table 8. 𝐿𝑡 was changed in the range of 0.0014 to 

0.002 hours. These results show that changes in 

loading time (𝐿𝑡) influence the total cost of distri-

bution. When the loading time is greater, the total cost 

of distribution is higher. Conversely, when the loading 

time the smaller, the total cost of distribution is lower.  

 

Furthermore, influence the loading time (𝐿𝑡) on fuel 

cost (𝐹𝑐) and the cost of late delivery are also present-

ed. The experiment results describe that changes in 

the value of 𝐿𝑡 affected late delivery costs. However, it 

does not influence fuel costs. When the Lt value is 

higher, the late delivery cost is greater. Conversely, 

when the Lt value is smaller, the late costs are also 

smaller. 

 

Table 8. Effect of change in Lt on costs. 

Lt (hour) 
fuel cost 

(IDR) 

late delivery cost 

(IDR) 

Total 

distribution 

cost (IDR) 

0.0014 9,887 2,910 12,797 

0.0015 9,887 3,150 13,037 

0.0016 9,887 3,390 13,277 

0.0017 9,887 3,630 13,517 

0.0018 9,887 3,870 13,757 

0.0019 9,887 4,110 13,997 

0.0020 9,887 4,382 14,269 
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Table 9. Effect of changes LKP on costs. 

LKP (liter) 
Fuel cost 

(IDR) 

Late delivery 

cost (IDR) 

Total distribution 

cost (IDR) 

0.040  15,820  3,630  19,450 

0.035  13,843  3,630  17,473 

0.030  11,865  3,630  15,495 

0.025   9,887  3,630  13,517 

0.015   7,932  3,630  11,562 

0.010   5,995  3,630   9,625 

0.005  3,977  3,630   7,607 

 
Table 10. Effect of changes fuel price on costs. 

Fuel price 

(IDR) 

Fuel cost 

(IDR) 

late delivery 

cost (IDR) 

Total distribution 

cost (IDR) 

7,100  9,176 3,630 12,806 

7,300  9,453 3,630 13,083 

7,500  9,693 3,630 13,323 

7,650  9,887 3,630 13,517 

7,800  10,082 3,630 13,712 

8,000  10,340 3,630 13,970 

8,200  10,599 3,630 14,229 

 

Effect of Liter Per-Kilometer (𝑳𝑲𝑷)  on cost 

 

The results of the sensitivity analysis of LKP on costs 

are shown in Table 9. In this analysis, the LKP was 

changed in the range of 0.005 to 0.04 liters per 

kilometer. The results show that LKP influences fuel 

cost and total distribution costs. However, LKP does 

not affect late delivery costs. In addition, the experi-

mental results find that when the LKP value the 

smaller, the fuel cost and total distribution cost are 

also smaller. Conversely, when the value of the LKP 

is greater, the fuel cost and total distribution costs are 

higher. 

 

Effect of Fuel Price (Cf) on cost 

 

Table 10 describes the experimental results of 

changes 𝐶𝑓 on costs. Sensitivity analysis on fuel price 

was carried out by changing the fuel price range of 

IDR 7,100 to IDR 8,200. The results experiment 

present that changes Cf influence into fuel cost and 
total distribution costs. However, the late delivery cost 

does not change. When the Cf is lower, the fuel cost 

and total distribution cost decrease. Conversely, when 

the Cf value is higher, the fuel cost and total 

distribution cost increase. 

 

Effect of Service Time (St) on cost 

 

Changes of St were conducted by adding and 

subtracting St in Table 3 with a range of ± 0.01 hours 
per unit. The results of change Service time (St) on 

costs are presented in Table 11. The results show that 

St influences total distribution costs and late delivery 

costs. It looks that if the value of St increases, the late 

delivery cost and the total distribution costs also 

increase. 

Table 11. Effect of St Changes on Costs. 

St (hour) 
fuel cost 
(IDR) 

late delivery 
cost (IDR) 

Total distribution 
cost (IDR) 

0.01 9,887  13,013   22,900 

0.005 9,887  7,534   17,421 

0.0025 9,887  5,494   15,381 

0 9,887  3,630   13,517 

-0.0025 9,887  2,715   12,602 

-0.005 9,887  1,883   11,770 

-0.01 9,887  785   10,672 

 
Table 12. Comparison algorithms towards the total 

distribution costs (IDR). 

Cases 
Node 

Local search 

[20] 
PSO[37] ACO [38] CA 

Small 

10 4,674* 4,674* 4,674* 4,674* 

15 6,311* 6,311* 6,311* 6,311* 

19 13,518* 13,518* 13,518* 13,518* 
20 10,404 9,677* 9,677* 9,677* 

Medium 

30 17,844 16,046 16,256 15,836* 

40 23,313 24,404 22,281 20,885* 
50 39,242 36,507 37,789 32,015* 

Large 

60 36,433 34,961 36,051 34,425* 

70 40,354 39,436 39,627 37,389* 
80 51,255 48,099 46,225 45,709* 

100 55,545 52,354 51,985 50,254* 

*asterisks and bold indicated the best solution 
 

Conversely, if the value of St decreases, the late 
delivery cost and the total distribution cost also 
decrease. 

 
Comparison Algorithm  
 

This section presents a comparison of the algorithm's 
performance towards the total distribution cost and 
computation time. The algorithm comparison based 

on total distribution cost is shown in Table 12. It 
shows that, in small cases, the proposed CA algorithm 

has a good solution than [37] and ACO [38] algorithms. 
However, in medium and large cases, the CA 
algorithm is proven better than the Local search 

algorithm [20], PSO[37], and ACO [38]. 
 
Results REP values are shown in Figure 4 as a 

comparison between the proposed algorithm and 

other algorithms. The average REP value for the 11 

experimental node variants for Local search 

algorithms [20] was 8.26 percent. In the PSO [37] and 

ACO [38] algorithms, the REP values are 4.42 and 
3.88 percent, respectively. A positive REP value 

indicates that the proposed algorithm is more effective 

in solving the GVRPTW problem than the existing 

algorithm. These results indicate no average REP for 

the completion of the 11 experimental node variants 

that resulted in a negative REP value. It shows that 

the proposed CA algorithm is more competitive than 
other algorithms and significantly improves the 

quality of GVRPTW. The ACO algorithm [38] is the 

algorithm with the smallest positive REP, followed by 

the PSO Algorithm [37] and Local search algorithms 

[20]. 
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Table 13.  Wilcoxon test of the CR 

Test Z 
Asymp. Sig. (2-

tailed) 

Proposed Algorithm - Local 

search algorithm [20] 
-2.521 0.012 

Proposed Algorithm - PSO[37] -2.366 0.018 

Proposed Algorithm - ACO [38] -2.366 0.018 

 
Table 14. Comparison algorithms towards the computation 

time (Second). 

Cases 
Node 

Local 

Search 
PSO ACO CA 

Small 

10 4.20 1.04 2.29 1.83 

15 4.99 1.02 2.48 2.01 

19 6.02 1.68 2.68 2.43 

20 6.17 1.80 2.69 2.53 

Medium 

30 7.57 2.48 3.51 3.73 

40 9.33 2.32 4.81 4.57 

50 13.07 3.08 5.52 6.49 

Large 

60 14.14 3.45 6.97 7.39 

70 15.63 3.96 7.63 7.94 

80 21.85 4.61 10.37 9.87 

100 25.12 7.75 12.15 11.89 

The performance of each algorithm is also compared 
based on the CR value. The proposed algorithm has 
better performance than other algorithms if the CR is 
less than 100 percent. However, the proposed 
Algorithm has the same good performance if the CR is 
100 percent. Furthermore, if the CR is greater than 
100%, another algorithm performs better than the 
proposed algorithm. CR results for each algorithm are 
shown in Figure 5. The calculation results show that 
the average CR values for the Local search algorithm 
[20], PSO[37], and ACO [38] are 92.70, 96.02, and 
96.48 percent, respectively. Thus, it shows that the 
proposed algorithm provides a better solution than 
other procedures. 
 

Statistical tests are also presented to test the 

performance of the proposed algorithm compared to 

other algorithms. This study utilizes the Wilcoxon 

test. This test is based on the CR value on the 11 

experimental node variants. The results of the 

Wilcoxon statistical test are presented in table 13. It 

shows that statistically, the proposed algorithm 

produces better solutions than other algorithms. 

 
Figure 4. REP results for each algorithm 

 

 
Figure 5. CR results for each algorithm 
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The algorithms comparison in computation time is 

presented in Table 14. It shows that the number of 

nodes has a significant effect on computation time. 

Based on experiments, the PSO [37] procedure 

produces the fastest computation time, followed by the 

CA, ACO [38], and Local search algorithms [20]. 

 

Conclusion 
 

This study proposed a Camel Algorithm (CA) to solve 

GVRPTW problems. This study successfully 

developed the CA algorithm to minimize the total 

distribution costs involving fuel and late delivery 

costs. The results show that the CA parameters 

variation influences the total distribution costs. This 

study also conducted a sensitivity analysis to examine 

the effect of variables on costs. To measure the 

algorithm performance, this study compared the 

proposed algorithm with some state-of-the-art algo-

rithms. The comparison results showed that the CA 

algorithm was effective in solving the GVRPTW 

problem. Some of the limitations of this study were (1) 

this study ignoring the pickup and delivery loading 

and (2) demand which was assumed to be deter-

ministic. Future research is expected to consider the 

pickup and delivery loading in solving the GVRPTW 

problem. Moreover, research needs to explore the 

uncertainty of the demand. 
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