
 

 

Jurnal Teknik Industri, Vol. 22, No. 1, June  2020 DOI: 10.9744/jti.22.1.11-16 

ISSN 1411-2485 print / ISSN 2087-7439 online 

Application of Ensemble Empirical Mode Decomposition based 

Support Vector Regression Model for Wind Power Prediction 
 

Irene Karijadi1*, Ig. Jaka Mulyana1 

  
 

Abstract: Improving the accuracy of wind power prediction is important to maintain power system 

stability. However, wind power prediction is a difficult task due to non-stationary and high 

volatility characteristics. This study applies a hybrid algorithm that combines ensemble empirical 

mode decomposition (EEMD) and support vector regression (SVR) to develop a prediction model 

for wind power prediction. Ensemble empirical mode decomposition (EEMD) is employed to 

decompose original data into several Intrinsic Mode Functions (IMFs). Finally, a prediction model 

using support vector regression is built for each IMF individually, and the prediction result of all 

IMFs is combined to obtain an aggregated output of wind power. Numerical testing demonstrated 

that the proposed method could accurately predict the wind power in Belgium. 
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Introduction 

 

Nowadays, electricity demand is increasing rapidly, 
and it cannot be supplied only from conventional 
energy sources such as fossil fuels since it has limited 
capacity. Therefore, there is a major shift in electricity 
generation where people started to utilize renewable 
energy technology, such as solar and wind energies. 
Compared with fossil fuels, renewable energy can 
reduce carbon emission and minimize the risk of elec-
tricity shortage.  Wind energy is a part of renewable 
energy technology, and as reported by [1] the global 
cumulative installed wind capacity reached nearly 
591 GW at the end of 2018. 
 

Wind power prediction is essential to maintain power 
system stability. By having an accurate wind power 
prediction, utilities can adjust the power dispatching 
timely to ensure the stable operation of the power 
grid. However, the non-stationary pattern and strong 
volatility of wind speed characteristic make predict-
ing wind power challenge.  
 

Various methods have been developed to predict wind 
power, including statistical models and machine 
learning models. In [2] ARMA Statistical model is 
used to predict the tuple of wind speed and direction. 
Artificial Neural Network (ANN) as one of the 
machine learning method is utilized in [3] to predict 
wind dataset. Zhou et al. [4] utilized another popular 
machine learning method, namely Support Vector 
Regression (SVR) to predict one-step ahead of wind 
speed prediction and achieved reasonable accuracy 
level with fine-tuning SVR parameters. 
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Wind power data often shows a non-stationary 

pattern and high volatility; thus, it is difficult for a 

single method to predict the time series accurately.  

As a result, many researchers have developed a 

hybrid model to enhance the prediction accuracy of 

wind power prediction. Wavelet-based hybrid 

models have been proposed in [5], and wavelet 

could improve the accuracy of wind power 

prediction. However, the wavelet method needs a 

prior selection of basic wavelet and decomposition 

level. Empirical Mode Decomposition (EMD) is 

another decomposition approach introduced by 

Huang et al. [6]. One of the advantages of EMD over 

wavelet is its adaptiveness where EMD does not 

need a prior selection of decomposition level. The 

hybrid model incorporated EMD-SVR is introduced 

in [7].  EMD has a limitation of a mode mixing 

problem. Therefore Ensemble Empirical Mode De-

composition (EEMD) which is an improved version 

of EMD has been developed in [8] to tackle mode 

mixing problem. 

 

EEMD decomposition method solves the mode 

mixing problem, one of the major drawbacks of the 

original EMD. Thus, in this paper, we applied 

EEMD-SVR to predict 15-minute ahead of wind 

power. Instead of EMD and wavelet decomposition, 

EEMD is employed in this study to decompose the 

original wind series data into a series of Intrinsic 

Mode Functions (IMFs) and one residue, thereby 

reducing the complexity of original wind series into 

relatively stationer subseries. SVR will be used to 

predict each Intrinsic Mode Functions (IMFs) and 

the residue. Predictions of each IMF and the 

residue component are aggregated by summation 

to obtain the final prediction. 
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Methods 
 

Support Vector Regression 

 

Support Vector Regression is a part of the data 

mining techniques. SVR aims to find a function that 

deviates from the actual observation obtained target 

by a value less than 𝜀 for each training point [9]. A 

non-linear mapping function is used in SVR to project 

the training data set into a high dimensional feature 

space. The SVR attempts to minimize a minimization 

problem, as shown in the equation below: 

 

Min  
1

2
‖𝑤2‖               (1) 

𝑠. 𝑡 {
𝑦𝑖−⟨𝑤,𝑥𝑖⟩−𝑏 ≤ 𝜀 ,

⟨𝑤,𝑥𝑖⟩+𝑏− 𝑦𝑖 ≤ 𝜀 ,
                        (2) 

 

where 𝑤 is the vector of coefficients, 𝑏 is an intercept 

or bias term, and xi is a training sample with target 

value 𝑦𝑖. The inner product plus intercept ⟨𝑤, 𝑥𝑖⟩ + 𝑏 

is the prediction for that sample and ε is a free 

parameter that represents as a threshold. 
 

Ensemble Empirical Mode Decomposition 

 
Empirical Mode Decomposition (EMD) is capable of 

handling non-stationary and non-linear data, and it 

has been used in the past few years in the signal 

processing field and to improve the prediction accu-

racy. EMD reconstructs a time-series signal into a set 

of Intrinsic Mode Functions (IMFs) along with a 

residual trend. The procedure of the EMD algorithm 

[10] is described in Table 1. 

 

Table 1 EMD Algorithm 

Algorithm 1 Empirical Mode Decomposition (EMD) Algorithm  

Step 1.  Given a time series S(t), identify local maxima and minima. 

Step 2.  Calculate upper Su[t] and lower Sl[t] envelope by interpolation of local maxima and minima. 

Step 3.  Compute the mean (mt)of upper and lower envelopes. mt = 
Su[t]+Sl[t]  

2
  

Step 4.  Subtract mean from time series signal to obtain the first component   h(t). h(t) =  S(t) − mt 

Step 5.  Repeat the sifting process which consist of step 1 to step 4 by considering  h(t) as new S(t) until one of the stopping 

criteria is reached: 

(i) (mt) approaches zero 

(ii)  the numbers of zero-crossings and extrema of  h(t) differs at most by one, or  

(iii) maximum number of iterations is reached. 

 The stopping criteria determines whether sifting process should stop to produce number of IMF  

Step 6.  Treat h(t) as new IMF and calculate the residual signal r(t) as  r(t) =  S(t) −   h(t) 

Step 7.  Regard the r(t) as the new time series  S(t) to find next IMF.  Repeat steps 1 to 6 until all IMFs are obtained 

 

 

Figure 1. EMD decomposition illustration 
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Figure 1 illustrates the idea of EMD decomposition 

from step 1 to step 6, where Fig.1.a shows the original 

series and Fig.1.b shows its upper (red lines) and 

lower envelopes (blue lines), as well as the mean of the 

envelopes (black lines). The first IMF obtained from 

subtracting the mean value from the original time 

series (Fig.1.c), and Residue obtained from subtract-

ing the first IMF from the original time series 

(Fig.1.d). 

 

Ensemble Empirical Mode Decomposition (EEMD) is 

a recent improvement from the original author of 

EMD in which additional noise is used to better 

separate different frequency scales into different IMF. 

EEMD procedure is as follows [8]: (1) Add Gaussian 

white noise to input data. (2) Decompose the data 

with added white noise into IMFs. (3) Repeat step 1 

and 2 by 𝑁 times. 𝑁 is the number of ensembles. 

Gaussian white noise with difference mean and va-

riance is added for each time. (4) Calculate the means 

of corresponding IMFs as the final decomposition 

result. 

 

Methodology 

 

The proposed methodology, which comprises of sup-

port vector regression (SVR) and ensemble empirical 

mode decomposition (EEMD) for wind power pre-

diction, is illustrated in Figure 2. The proposed me-

thodology consists of two stages, which are data 

decomposition and data prediction. 

 

Data Decomposition 

 

The wind power data often shows a non-stationary 

pattern and high volatility. To reduce the effect of 

volatility and non-stationary pattern, the original ti-

me series data will be decomposed using Ensemble 

Empirical Mode Decomposition (EEMD) into several 

numbers of subseries (n). The number of subseries is 

determined from the sifting process, and this subse-

ries can be respectively named as IMF1, .,.., IMFn.  

 

Figure 3. Wind turbine in Belgium [15] 

 

Figure 4. Wind power generation over one-month period 

 

Data Prediction 

After that, the SVR prediction model is built for each 

IMF and residual. In this study, the input for the pre-

diction model includes the previous half-hour of wind 

power (2 as the time-lagged). After building SVR for 

each component, the prediction output of every IMF 

and residual are combined by summation as depicted 

in Figure 4. 
 

Results and Discussions 
 

Experimental Result 

 

We compared the hybrid SVR performances for each 

building with traditional SVR model, linear regres-

sion, random forest model and EMD-SVRͦ. We applied 

Data Decomposition 

based on EEMD
Input Data

IMF1

IMF2

IMFn

Residual

SVR

SVR

SVR

SVR

Aggregate Prediction 

Result

 

Figure 2. EEMD-SVR Flowcharts 
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EEMD using the “Rlibeemd” package in [11], and for 

SVR prediction model, we used the “e1071” package 

in R [12]. All the experimental results were conducted 

using R programming on a standard PC. 

 

Dataset  

 

The proposed method was tested on a publicly 

available dataset for wind power generation in a 

Belgian wind farm [13]. Figure 3 shows one of the 

wind turbines in Belgium. Wind turbines are utilized 

to capture kinetic energy from the wind and generate 

electricity. When the wind blows past a wind turbine, 

its blades capture the kinetic energy from the wind 

and rotate it, turning it into mechanical energy. The 

rotation itself turns an internal shaft connected to a 

gearbox, which increases the speed of rotation and 

that spins a generator that produces electricity [14]. 

The period of data used in this study is from 1 

December 2019 to 31 December 2019.  Figure 4 shows 

the original time series data of wind power generation 

for one-month period [15]. Data were collected with a 

time interval of 15 min. 

 

Prediction Model Development 

 

Input 

We built the SVR prediction model for each IMF and 

residual. For 15 minutes ahead of wind power 

prediction (𝑋𝑡), the input feature includes the 

previous 30 min wind power data (𝑋𝑡−1 , 𝑋𝑡−2) 

 

Parameter Setting 

SVR has several parameters that are required to be 

determined in advance. In this study, we used a grid 

search for hyper-parameter tuning. We used RBF 

function as our kernel function. The range of cost is [2-

4,24], and the range of gamma is [10-3,10-1]. 

Training and Testing 

We divided the data into 70% of data as training data 
set and 30% of data as test data sets. The training 
data set is used to develop the models while the test 
data set is used to evaluate the prediction performan-
ce of the models. 
 
Evaluation Metrics 
 

We use Mean absolute percentage error (MAPE), root 
means square error (RMSE), and mean absolute error 
(MAE) as evaluation metrics to verify the performan-
ce of the proposed method. The formula for MAPE, 
RMSE and MAE are given in equations (4–6) below: 

𝑀𝐴𝑃𝐸 % =
100

𝑛
∑ |

𝑦𝑡
′− 𝑦𝑡

𝑦𝑡
|𝑛

𝑡=1             (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡

′ − 𝑦𝑡)2𝑛
𝑡=1             (5) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡

′ − 𝑦𝑡|𝑛
𝑡=1                       (6) 

 
where 𝑦𝑡

′is the predicted value, 𝑦𝑡is the actual value, 
and 𝑛 is the number of data points in the time series. 

Since MAPE, RMSE and MAE is a measure of error, 
high numbers are bad and low numbers are good. 
 
The Results 
 

In this study, the EEMD method is employed with 
250 as the ensemble number. EEMD reconstructs the 
original time series into several IMFs and one 
residue. Figure 5 displays the decomposition results 

of original time series data. EEMD decomposed into 
11 subseries which this 11 subseries can be 
respectively named as IMF1, IMF2,.., IMF11. The 
highest frequency series is IMF1, and IMF11 is the 
lowest frequency among these series which also 
reflects the trend of the original series. IMF11 is also 
named as residue. As can be seen from Figure 5, the 
extracted component obtained from EEMD is more 
stable than the original data, and the extracted 
components are easier to be modelled. 

 

Figure 5. Decomposition result 
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Table 2. Sample entropy value for each IMF 

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 

0.946 0.835 0.761 0.683 0.558 0.489 

IMF 7 IMF 8 IMF 9 IMF 10 IMF 11  

0.437 0.354 0.313 0.284 0.286  

 

 
Figure 6. Prediction result on test dataset (1 day observa-

tion)  

 

Shannon entropy (SE) [16] is used to measure the 

volatility of the series. High values of this statistic  

indicate volatility and unpredictability. Table 2 shows 

the SE of the sub-series, and the first IMF has the 

biggest SE, and as the number of IMF increases, the 

SE of each IMF is greatly reduced. 

 

After being decomposed by EEMD, we build the SVR 

model on each IMF and residue. After building SVR 

for each component, the prediction output of every 

IMF and residual are combined by summation.  

 

The predicted results of EEMD-SVR model (red lines) 

fit and are close to the actual data (blue lines), which 

demonstrates that the EEMD-SVR can produce good 

prediction result to predict wind power (see Figure 6). 

 

We benchmarked the proposed method with other 

machine learning methods such as linear regression, 

random forest (RF), support vector regression (SVR) 

and Empirical mode decomposition combined with 

support vector regression (EMD-SVR) [7]. For all the 

machine learning methods (Linear Regression, 

Random Forest, SVR, EMD SVR, and EEMD SVR),  

the output is the 15 minutes ahead wind power 

prediction, and the input feature includes the 

previous  30 minutes of wind power data. For Random 

Forest (RF), we used the “e1071” package in R [12], 

and for Linear Regression, we used the “stats” 

package in R [17] 

 

The results of the proposed method are summarized 

in Table 3. As presented in Table 3, we can see that 

the proposed method has outperformed the bench-

mark method. Besides that, compared with SVR, the 

prediction accuracy after the application of EEMD 

prior to SVR is greatly enhanced. Thus, we can 

conclude that EEMD is an effective preprocessor to 

improve prediction accuracy and a proper technique 

to handle data with non-stationary and volatility. 

 

Conclusion 
 

An accurate and reliable wind power prediction is 

crucial to reduce the operating cost of wind power and 

to maintain grid stability. However, it is often difficult 

to predict wind power accurately because wind power 

has the characteristic of high volatility and non-

stationary. In this paper, a hybrid EEMD based Sup-

port Vector Regression is applied to predict the wind 

power in one of the wind farms in Belgium. The 

experimental results indicate that the proposed me-

thod produces better results compared to the tradi-

tional SVR method, linear regression, random forest, 

and EMD SVR method. The EEMD is employed as 

data pre-processing to transform the original data 

into more stable subseries, and from the experimental 

results, we can see that EEMD is a good decomposi-

tion strategy to enhance the prediction accuracy. For 

future work, some external factors, such as weather 

data will be incorporated into the model. 
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