System Dynamic Simulation of Salacca-Pondoh’s Business as Usual Condition in Sleman District, Yogyakarta Province, Indonesia


  • Mohammad Prasanto Bimantio Jurusan Teknologi Hasil Pertanian Fakultas Teknologi Pertanian Institut Pertanian STIPER Jogjakarta



agriculture, salacca-pondoh, simulation, system dynamics


Production of horticultural crops in Sleman District is dominated by salacca-pondoh with total production in 2016 reaching 73 kton, cover up to 98% of total salacca-pondoh’s production in Yogyakarta Province. But salacca-pondoh’s farmers actually got very low-price during harvest season and they only act as a price taker that had low bargaining position, so that their welfare. This research formulated salacca-pondoh’s business as usual condition in Sleman District in form of system dynamic simulation. The factors influenced the low income of farmers during harvest season were identified. Result showed there are several seasonal “pitfalls” points in the farmer’s income which made it dropped far below the average value. It has potential to make the farmers not to replant salacca-pondoh then switch to other fruits that are more profitable. Product diversification either vertically or horizontally by allocating some of the fruit and waste to be convert into derivative products can be a step to increase the income of salacca-pondoh’s farmers and intensify the economic activity in Sleman District.


BPS Provinsi D.I. Yogyakarta. Daerah Istimewa Yogyakarta Dalam Angka 2017. Yogyakarta: BPS Provinsi D.I. Yogyakarta; 2017. doi:10.1017/CBO9781107415324.004

BPS Kabupaten Sleman. Kabupaten Sleman Dalam Angka 2017. Sleman: BPS Kabupaten Sleman; 2017.

Verheij EM., Coronel RE. Edible Fruits and Nuts. Wageningen: Pudoc; 1991.

Ong SP, Law CL. Mathematical Modelling of Thin Layer Drying of Salak. J Appl Sci. 2009;9(17):3048-3054.

Nazaruddin, Kristiawati R. 18 Varietas Salak. Depok: Penebar Swadaya; 1992.

Faatiah MB, Utama AG, Nordian M. Potret Pertanian Salak Di Sleman, Sebuah Hasil Pengamatan Lapangan Di Desa Trumpon. Bandung; 2013.

Dewi A. Analisis Tataniaga Salak Pondoh di Desa Wonokerto, Kecamatan Turi, Kabupaten Sleman. 2014.

Bouloiz H, Garbolino E, Tkiouat M, Guarnieri F. A system dynamics model for behavioral analysis of safety conditions in a chemical storage unit. Saf Sci. 2013;58:32-40. doi:10.1016/j.ssci.2013.02.013

Špicar R. System dynamics archetypes in capacity planning. Procedia Eng. 2014;69:1350-1355. doi:10.1016/j.proeng.2014.03.128

Forrester JW. Industrial Dynamics. J Oper Res Soc. 1997;48(10):1037-1041. doi:10.1057/palgrave.jors.2600946

Barlas Y. Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev. 1996;12(3):183-210. doi:10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4

Oliva R. Empirical validation of a dynamic hypothesis. In: Proceedings of the 1996 International System Dynamics Conference. System Dynamics Society, Cambridge, MA. ; 1996:405-408.

Wolstenholme EF. System Enquiry: A System Dynamic Approach. John Wiley & Sons, Inc.; 1990.

Luna-Reyes LF, Andersen DL. Collecting and analyzing qualitative data for system dynamics: methods and models. Syst Dyn Rev. 2003;19(4):271-296. doi:10.1002/sdr.280

Hasan N, Suryani E, Hendrawan R. Analysis of Soybean Production and Demand to Develop Strategic Policy of Food Self Sufficiency: A System Dynamics Framework. Procedia Comput Sci. 2015;72:605-612. doi:10.1016/j.procs.2015.12.169

Hasibuan AM, Nurmalina R, Wahyudi A. Policy Analysis of Cocoa Downstream Industry Development (A System Dynamic Approach). Inform Pertan. 2012;21(2):59-70.

Blumberga A, Bazbauers G, Davidsen P, Blumberga D, Gravelsins A, Prodanuks T. System dynamics model of a biotechonomy. J Clean Prod. 2016:1-15. doi:10.1016/j.jclepro.2017.03.132

Walters JP, Archer DW, Sassenrath GF, et al. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol Modell. 2016;333:51-65. doi:10.1016/j.ecolmodel.2016.04.015

Ventana System Inc. Vensim PLE and Vensim PLE Plus User’s Guide. 4th ed. USA; 1999.