
1

A New Evolutionary Algorithm Based on Bacterial Evolution and

Its Application for Scheduling a Flexible Manufacturing System

Chandramouli Anandaraman1*, Arun Vikram Madurai Sankar1, Ramaraj Natarajan1

Abstract: A new evolutionary computation algorithm, Superbug algorithm, which simulates
evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale
optimization problems such as scheduling, transportation and assignment problems. In this
work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS) by
minimizing makespan. The FMS comprises of four machines and two identical Automated
Guided Vehicles (AGVs). AGVs are used for carrying jobs between the Load/Unload (L/U) station
and the machines. Experimental results indicate the efficiency of the proposed algorithm in its
optimization performance in scheduling is noticeably superior to other evolutionary algorithms
when compared to the best results reported in the literature for FMS Scheduling.

Keywords: Superbug algorithm, FMS, scheduling, makespan, bacterial evolution.

Introduction

Over the years, researchers suggest that nature is a

great source for inspiration to both develop intelli-

gent systems as well as provide solutions to complex

problems. Evolutionary pressure forces living orga-

nisms to develop great expertise in fighting for food,

territories and mates. Many of these skills and tech-

niques have been imitated to develop optimization

algorithms, and the evolution over a number of gene-

rations enhances the performance of an algorithm.

In this work, a new nature-inspired algorithm, based

on bacterial evolution, Superbug algorithm is

proposed.

The algorithm is inspired by the behaviour of

bacteria such as Staphylococcus aureus, Strepto-

coccus, Enterococcus, Salmonella and E. coli. Several

antibiotics were developed to cure infections by these

microorganisms in the early 20th century. It was dis-

covered that many of these bacteria had developed

resistance to the antibiotics over time. The increa-

sing levels of antibiotic resistance and the emergence

of epidemic strains of bacterial pathogens over the

last decade (Enright et al. [7] and Livermore [9])

highlight the adaptability of bacteria and the

remarkable speed of bacterial evolution. In the face

of constant environmental challenges, the ability of

bacteria to generate genetic variation is crucial for

their survival. Bacterial genomes tend to evolve

through several routes: Mutation to existing genes,

DNA loss or rearrangement or horizontal transfer of

genes from one bacterium to another (Ziebuhr et al.

[17]).

1 Department of Production Engineering, National Institute of

Technology, Tiruchirappalli 620 015, India.

Email: acmouli89@gmail.com

* Corresponding author

Evolutionary computation has been applied to the

scheduling of multiple CPU cores on a parallel

computer, and has recreated known scheduling

algorithms (Jaros et al. [8]). Of recent interest are

bio-inspired approaches to manufacturing system

design, including biomimetics, where computational

systems mimic behaviours found in natural orga-

nisms. Examples of biomimetic approaches include

mimicking the social behaviour of insect colonies

(Truszkowski et al. [15]), flocking (Spector et al. [12]

and Anthony [2]), and using the concept of

chemotaxis to facilitate robust network routing. Two

bio-inspired studies include the recent works

(Babaoglu et al. [3, 4] and Patel et al. [10]) inspired

by the synchronization of firefly flashes. Swarm

intelligence algorithms such as Bee algorithm were

applied to schedule jobs for a machine (Pham et al.

[11]). Chong et al. [6] utilized an efficient neigh-

bourhood structure to search for feasible solutions

and iteratively improve on prior solutions.

Bilge and Ulusoy [5] presented a model for simul-

taneous scheduling of machines and material

handling system in an FMS. This problem was

approached using Genetic algorithms (GA) (Ulusoy

et al. [16]). A new hybrid genetic algorithm composed

of GA and heuristic for the simultaneous scheduling

problem for minimization of makespan was pre-

sented (Abdelmaguid et al. [1]). A number of evolu-

tionary techniques have been applied for scheduling

different elements in an FMS, making it a con-

venient problem for testing new solution method-

logies.

The optimization of FMS schedules using non-

traditional techniques was performed (Sreedhar

Kumar et al. [13]) The problem of simultaneous sche-

duling of machines and two identical automated

guided vehicles (AGVs) in an FMS using Sheep

Jurnal Teknik Industri, Vol. 14, No. 1, Juni 2012, 1-12

ISSN 1411-2485 print / ISSN 2087-7439 online

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

2

Flock Heredity algorithm was addressed (Subbaiah

et al. [14]). In the current work, a new evolutionary

algorithm based on bacterial evolution namely,

Superbug algorithm is proposed in order to solve

optimization problems. The algorithm is designed to

enhance the diversity of the search domain by

combining effective local and global search proce-

dures. This helps in obtaining high quality solutions

compared to other existing optimization algorithms

found in the literature.

Methods

Superbug Algorithm

The primary mode through which a bacterium

develops antibiotic resistance is through mutation.

After mutation, a different gene sequence is gene-

rated, which attempts to survive the chemical action

of the antibiotic. While this is similar to the evolution

of other organisms, another technique used by

bacteria is the Lateral gene transfer. In this, genes

are transferred from one bacterium to another by cell

to cell contact. This helps more bacteria acquire a

drug resistant gene and enhance its chances of

survival. The ability of the transformed bacterium is

further improved by single point mutation, i.e. trans-

ferring a vulnerable portion of a gene to another

location in the same gene sequence.

The resulting bacteria have better resistance to the

antibiotic. They reproduce and multiply their num-

bers. After going through these stages of evolution

several times, a bacterium would have accumulated

several antibiotic-resistant genes. Such a bacterium

is called a superbug. This evolution process has the

capability to generate a large number of bacteria

with high antibiotic resistance compared to the

present GA procedures.

Stages in the Evolution of a Bacterium

Genetic Mutation

When the bacterium is exposed to the antibiotic, its

normal metabolic processes are suppressed. This

forces it to try to survive by mutating itself. Mutation

rearranges part of the gene sequence so that it

becomes immune to the antibiotic. The probability of

a bacterium undergoing mutation depends on the

levels of exposure to antibiotic and the extent of

suppression of its metabolic activities. The mutation

takes place in two levels, inverse mutation and

pairwise interchange mutation (Subbaiah et al. [14]).

Lateral Gene Transfer

After undergoing mutation, a population of bacteria

with varying levels of fitness (in terms of resistance

to the antibiotic) emerges. A bacterium with higher

fitness tries to increase its fitness by engaging

contact with another bacterium having a lower

fitness value. A random gene is transferred from the

bacterium having lower fitness to the bacterium

with higher fitness. This helps in transferring some

of the drug resistant strains from one bacterium to

another, thereby improving the fitness level consi-

derably.

Single Point Mutation

This technique is employed by the bacterium in the

final stage of its evolution. A single gene is transferred

to a random location in the bacterium itself, i.e.

mutation takes place in a single point. This is called

single point mutation or point mutation.

Reproduction

The set of bacteria which have acquired drug

resistance tend to survive and reproduce. The next

generation of bacteria, if exposed to the antibiotic,

will employ the same techniques to further improve

their resistance. After several generations, a set of

bacteria with resistance to several drugs is deve-

loped, which is called a superbug.

In the current work, the algorithm is tested on a

FMS scheduling problem. The objective is to

minimise the makespan which is taken as the fitness

function.

FMS Description

An FMS is considered in which there are four

machines having Computer Numerical Control

machines (CNCs), each with an independent and

self-sufficient tool magazine, one Automatic Tool

Changer (ATC) and one Automatic Pallet Changer

(APC) and with multiple Automated Guided

Vehicles (AGVs) as material handling devices. The

problem of simultaneous scheduling of machines and

AGVs is addressed. We have considered 4 different

layouts and 10 job sets consisting of 1-8 different job

sets and operations on machines to be performed.

The objective is to minimize makespan. An iterative

procedure is developed in which a new machine

schedule is generated using the superbug algorithm

after each iteration. Figure 1 illustrates the different

phases applied to every generated sequence.

Assumptions

The types and number of machines are known, there

is sufficient input/output buffer space for each

machine’s machine loading allocation of tools to

machine assignment of operation to machine are

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

3

Figure 1. Phases of the given approach

made pallet and other necessary equipment are

allocated. AGVs are used for material transfer bet-

ween machines and also between L/U station and

machines. The speed of AGV (40 m/min), the dis-

tance between the two machines and the distance

between loading/ unloading machines are known.

Input Data

The input data that is, travelling time matrix and

the layouts taken from Subbaiah et al. [14] are

shown in Tables 1-4 and job sets for the problem

taken from Bilge and Ulusoy [5] are shown in Table

5. The L/U station serves as a distribution centre for

parts not yet processed and as a collection centre for

parts finished. All vehicles start from the L/U station

initially.

Scheduling of FMS

Machines are scheduled based on the operation

sequence derived by the algorithm. Initially one of

the AGVs carries jobs from the L/U station to the

respective workstations where the first operations

are scheduled. For subsequent operations, whichever

AGV is available reaches the machine where the

previous operation has been completed, picks up the

job and carries it to the machine scheduled for the

next operation. The flowchart given in Figure 2

shows the scheduling methodology adopted for this

problem. The equations used for computing the job

completion time and makespan are given in Eqs. (1)

- (3).

 (1)

Job completion time: ∑

 (2)

Makespan: (3)

Table 1. Travel time matrix for Layout 1

Destination

S
o
u

rc
e

 L/U M1 M2 M3 M4

L/U 0 6 8 10 12

M1 12 0 6 8 10

M2 10 6 0 6 8

M3 8 8 6 0 6

M4 6 10 8 6 0

Table 2. Travel time matrix for Layout 2

Destination

S
o
u

rc
e

 L/U M1 M2 M3 M4

L/U 0 4 6 8 6

M1 6 0 2 4 2

M2 8 12 0 2 4

M3 6 10 12 0 2

M4 4 8 10 12 0

Table 3. Travel time matrix for Layout 3

Destination

S
o
u

rc
e

L/U M1 M2 M3 M4

L/U 0 2 4 10 12

M1 12 0 2 8 10

M2 10 12 0 6 8

M3 4 6 8 0 2

M4 2 4 6 12 0

Table 4. Travel time matrix for Layout 4

Destination

S
o
u

rc
e

L/U M1 M2 M3 M4

L/U 0 4 8 10 14

M1 18 0 4 6 10

M2 20 14 0 8 6

M3 12 8 6 0 6

M4 14 14 12 6 0

where

 : job number

 : operation number

 : number of job

 : time needed for -th operation of -th job

 : total traveling time for -th job before -th

operation

 : total processing time for -th job before -th

operation

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

4

Table 5. Job set data

Job Set 1 Job Set 6

Job 1 M1(8) M2(16) M4(12) Job 1 M1(9) M2(11) M4(7)

Job 2 M1(20) M3(10) M2(18) Job 2 M1(19) M2(20) M4(13)

Job 3 M3(12) M4(8) M1(5) Job 3 M2(14) M3(20) M4(9)

Job 4 M4(14) M2(18) Job 4 M2(14) M3(20) M4(9)

Job 5 M3(10) M1(15) Job 5 M1(11) M3(16) M4(8)

Job Set 2 Job Set 7

Job 1 M1(10) M4(18) Job 1 M1(6) M4(6)

Job 2 M2(10) M4(18) Job 2 M2(11) M4(9)

Job 3 M1(10) M3(20) Job 3 M2(9) M4(7)

Job 4 M2(10) M3(15) M4(12) Job 4 M3(16) M4(7)

Job 5 M1(10) M2(15) M4(12) Job 5 M1(9) M3(18)

Job 6 M1(10) M2(15) M3(12) Job 6 M2(13) M3(19) M4(6)

 Job 7 M1(10) M2(9) M3(13)

 Job 8 M1(11) M2(9) M4(8)

Job Set 3 Job Set 8

Job 1 M1(16) M3(15) Job 1 M2(12) M3(21) M4(11)

Job 2 M2(18) M4(15) Job 2 M2(12) M3(21) M4(11)

Job 3 M1(20) M2(10) Job 3 M2(12) M3(21) M4(11)

Job 4 M3(15) M4(10) Job 4 M2(12) M3(21) M4(11)

Job 5 M1(8) M2(10) M3(15) M4(17) Job 5 M1(10) M2(14) M3(18) M4(9)

Job 6 M2(10) M3(15) M4(8) M1(15) Job 6 M1(10) M2(14) M3(18) M4(9)

Job Set 4 Job Set 9

Job 1 M4(11) M1(10) M2(7) Job 1 M3(9) M1(12) M2(9) M4(6)

Job 2 M3(12) M2(10) M4(8) Job 2 M3(16) M2(11) M4(9)

Job 3 M2(7) M3(10) M1(9) M3(8) Job 3 M1(21) M2(18) M4(7)

Job 4 M2(7) M4(8) M1(12) M2(6) Job 4 M2(20) M3(22) M4(11)

Job 5 M1(9) M2(7) M4(8) M2(10) M3(8) Job 5 M3(14) M1(16) M2(13) M4(9)

Job Set 5 Job Set 10

Job 1 M1(6) M2(12) M4(9) Job 1 M1(11) M3(19) M2(16) M4(13)

Job 2 M1(18) M3(6) M2(15) Job 2 M2(21) M3(16) M4(14)

Job 3 M3(9) M4(3) M1(12) Job 3 M3(8) M2(10) M1(14) M4(9)

Job 4 M4(6) M2(15) Job 4 M2(13) M3(20) M4(10)

Job 5 M3(3) M1(9) Job 5 M1(9) M3(16) M4(18)

 Job 6 M2(19) M1(21) M3(11) M4(15)

Table 6. Numbering of operations in Job Set 1

Job No. Job 1 Job 2 Job 3 Job 4 Job 5

Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1

Operation No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 7. Calculation of makespan

Job Machine AGV Travel time Job reach Job ready Job completion

3,1 3 1 10 10 10 22

2,1 1 2 6 6 6 26

1,1 1 2 18 18 26 34

5,1 3 1 18 18 22 32

3,2 4 1 6 28 28 36

3,3 1 1 10 46 46 61

2,2 3 2 8 34 34 44

1,2 2 2 14 48 48 64

5,2 1 1 16 62 62 77

4,1 4 2 22 70 70 84

1,3 4 1 14 76 84 96

4,2 2 2 8 92 92 110

2,3 2 1 12 96 96 114

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

5

Figure 2. Scheduling flowchart

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

6

Figure 3. Flowchart for Superbug algorithm

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

7

Table 8. Initial sequences

Sequence Makespan

1 2 7 4 12 3 8 5 10 6 11 9 13 125

7 1 10 12 8 4 2 13 3 11 5 9 6 114

7 1 10 2 11 12 4 8 3 13 5 9 6 122

4 5 10 11 12 1 2 7 8 9 13 6 3 134

7 4 1 12 8 9 2 10 5 13 6 11 3 118

4 7 8 5 10 6 11 1 2 9 12 3 13 139

10 7 12 1 2 4 13 8 5 3 11 9 6 110

4 5 7 6 8 1 10 2 9 3 11 12 13 153

7 1 4 12 2 8 10 9 5 13 6 11 3 102

4 5 1 6 12 13 7 10 11 2 3 8 9 157

For example, Job set1 and Layout 1 are considered

for scheduling. For scheduling the FMS and calcu-

lating the makespan, initially continuous numbers

are given for each of the operations as shown in

Table 6. These numbers are used to generate 10

initial random sequences, while obeying the prece-

dence relation, i.e., the operations of a particular job

must be in increasing order.

Calculation of Makespan for a Particular

Operation Sequence

The following initial sequence is generated random-
ly, using the numbers assigned to the operations in
Table 6. The processing time and travelling time
matrix shown in Table 1-5.

7 4 1 12 8 9 5 2 13 10 3 11 6

The makespan of the job set when scheduled accord-
ing to the above sequence is calculated as given in
Table 7. The first column denotes the Job number
and the operation for that job needed to find the
machine and processing time for that operation. The
sequence of these operations is determined by the
string of numbers generated by the algorithm. The
second column indicates the machine used for this
Job and operation, as given in Table 5. The third
column specifies the AGV assigned to transport this
job. This is determined by computing the time each
AGV will take to reach the job and deliver it to its
destination, based on its previous assignment and
the travel times between machines (Tables 1, 2, 3 &
4). The AGV which could deliver the job at the
earliest, based on this calculation, is assigned. The
column ‘Travel time’ denotes the time taken by the
AGV to deliver the job while the column ‘Job reach’
specifies the time the job reaches its intended
machine. ‘Job ready’ shows the time the job is taken
up for processing (same as ‘Job reach’ if the machine
is free, else some delay occurs). ‘Job completion’ is
the time the job will get completed and be ready for

next operation. This value is arrived at by adding the
processing time (Table 5) to the ‘Job ready’ time.

Implementation of Superbug Algorithm for

Scheduling an FMS

Flowchart of Superbug Algorithm

Figure 3 shows the flow chart of the proposed

Superbug algorithm. The first step is initializing a

population composed of randomly generated indivi-

duals covering a wide range of solution spaceand

measuring the fitness of the individuals. The sub-

sequent stages include the mutation and the gene

transfer where unfit individuals get replaced by fit

ones. These operations are repeated for several gene-

rations until the termination criteria are met.

Steps in Superbug Algorithm

The algorithm consists of the following steps:

1. Generation of initial population

2. Mutation of the bacteria (inverse and pairwise

interchange mutation)

3. Gene transfer between bacteria to enhance fitness

4. Single point mutation of the modified bacteria

Generation of Initial Population

A set of ten initial sequences are randomly gene-

rated, as given in Table 8.

Mutation

The mutation consists of two steps, inverse mutation

and pairwise interchange mutation:

(a) Inverse mutation

In a sequence, two positions i and j are randomly

selected. The portion of the sequence between these

two positions is inverted to get a new mutated se-

quence. The new sequence represents the sequence

of operations after mutation. If the makespan of the

mutated sequence is less than the makespan of the

original sequence, the old sequence is replaced by the

new sequence.

Original sequence:

4 5 7 8 9 12 10 1 11 13 2 6 3

Mutated sequence:

4 6 9 8 7 13 11 2 10 12 1 5 3

(b) Pairwise interchange mutation
Two positions are i and j randomly selected in the
sequence. The operations in these positions are
interchanged to obtain the mutated sequence. The
makespan of the new sequence is compared with the
makespan of the parent sequence. The sequence

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

8

having the lower makespan value is stored and used
for next stage operation.

Original sequence

4 5 7 8 9 12 10 1 11 13 2 6 3

Mutated sequence

4 11 7 8 9 12 10 1 5 13 2 6 3

Mutation at positions 2 and 9

Gene Transfer

Two sequences are needed for gene transfer. The

sequence having the best makespan (lowest) in the

given population is chosen as donor. The sequence

with the second best makespan is the receptor. The

selection is done this way to maximize the chances of

the modified sequence giving an improved make-

span. A random set of operations is identified in the

donor sequence. The order of operations in the

identified set is used to replace the same operations

in the other sequence. The resulting sequence

replaces the original sequence if the makespan of the

resulting sequence is less than that of the previous

one.

Donor sequence

1 2 7 4 12 3 8 5 10 6 11 9 13

Receptor sequence:

4 5 10 11 12 1 2 7 8 9 13 6 3

Gene 4 8 11 is transferred to the receptor sequence

and replaces the gene 4 11 8

Sequences after transfer:

Donor sequence

1 2 7 4 12 3 8 5 10 6 11 9 13

Receptor sequence:

4 5 10 8 12 1 2 7 11 9 13 6 3

Single Point Mutation

A random operation is selected in the sequence and

moved to another random position in the sequence.

If the makespan of the resulting sequence is less

than that of the previous one, it replaces the

previous sequence.

Original sequence

10 7 12 1 2 4 13 8 5 3 11 9 6

Mutation of operation at position 6 to position 10

Mutated sequence:

10 7 12 1 2 13 8 5 3 4 11 9 6

The set of sequences obtained from the above

operations is sorted by their makespan values. The

Table 9. Parameter analysis

Para-

meter

Values taken

for analysis

Best

value

Corres-

ponding best

makespan

S 5, 10, 15, 20 5 91

N
500, 1000,

1500, 2000
1000 92

Pip
0.05, 0.1, 0.15,

0.2
0.2 92

Lg 3, 4, 5, 6, 7 3 92

Pg
0.5, 0.6, 0.7, 0.8,

0.9
0.9 92

Ps
0.1, 0.2, 0.3, 0.4,

0.5
0.4 92

lowest makespan in the set is taken as the

makespan of the generation. The sequences are

again subjected to the operations till the convergence

criterion is met.

Selection of Parameters for Superbug Algorithm

The algorithm has the following parameters to be

defined.

(1) Size of bacteria population (S)

(2) No. of generations for which the algorithm is

applied (N)

(3) Probability of inverse mutation and pairwise

interchange mutation (Pip)

(4) Length of gene transferred from one bacterium

to another (Lg)

(5) Probability of gene transfer taking place (Pg)

(6) Probability of bacteria undergoing single point

mutation (Ps)

An analysis is performed by assigning a set of values

to each of the above parameters. The performance of

the algorithm under each set of parameters is

examined to arrive at an appropriate set of

parameters that will provide optimal solutions to the

problems considered.

The population size is important here as the bacteria

will transfer genes to one another to improve their

fitness. Keeping the population too low will give in-

sufficient diversity of solutions, and a population too

high will reduce the chances of constructive gene

transfer. The number of generations is chosen in

such a way that the results produced are reasonable.

Probabilities of the inverse and pairwise mutations

are kept low so that not too many unfit sequences

are produced. Otherwise, due to the precedence res-

trictions in scheduling many of the mutated sequen-

ces will become unfit. For single point mutation, the

probability is higher than inverse and pairwise mu-

tation since the mutation is self-induced.

Table 9 shows the results of the analysis done on the
parameters of the Superbug algorithm.

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

9

Figure 4. Convergence graph of makespan

Table 10. Results

Layout Job Set STW UGA AGA PGA SFHA Superbug

1

1 96 96 96 96 90 92

2 105 104 102 100 96 94

3 105 105 99 99 105 96

4 118 116 112 112 119 111

5 89 87 87 87 87 86

6 120 121 118 118 118 94

7 119 118 115 111 128 113

8 161 152 161 161 137 117

9 120 117 118 116 111 105

10 153 150 147 147 148 129

2

1 82 82 82 82 80 73

2 80 76 76 76 76 66

3 88 85 85 85 74 71

4 93 88 88 67 96 88

5 69 69 69 69 72 65

6 100 98 98 98 86 79

7 90 85 79 79 87 74

8 151 142 151 151 128 97

9 104 102 104 102 93 87

10 139 137 136 135 130 102

3

1 84 84 84 84 80 78

2 86 86 86 86 80 78

3 86 86 86 86 79 76

4 95 91 89 89 92 86

5 76 75 74 74 73 70

6 104 104 104 103 86 80

7 91 88 86 83 94 83

8 153 143 153 153 130 98

9 110 105 106 105 94 93

10 143 143 141 139 127 116

4

1 108 103 103 103 101 100

2 116 113 108 108 113 104

3 116 113 111 111 115 109

4 126 126 126 126 130 125

5 99 97 96 96 96 95

6 120 123 120 120 125 103

7 136 128 127 126 145 124

8 163 163 163 163 146 136

9 125 123 122 122 126 115

10 171 164 159 158 173 145

85

95

105

115

125

135

0 100 200 300 400 500 600 700 800 9001000

M
a

k
e

s
p

a
n

No. of generations

Minimum makespan

Mean makespan

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

10

Figure 4 shows the minimum makespan and mean

makespan given by the algorithm when run with the

above parameters.

Results and Discussions

The Superbug algorithm is used for generating

optimal schedules for each problem by minimizing

the makespan. The coding has been developed using

MATLAB. A series of trial experiments are used to

estimate the optimal parameters for the algorithm.

Every instance of a problem is executed for 10 runs.

Any alteration of the above parameters led to con-

vergence at higher objective values than while using

the optimal parameters. From the convergence

graph for the algorithm (Figure 4) it is observed that,

even as the minimum makespan is obtained in few

generations, the mean makespan converges only

after several hundred generations. This indicates the

diversity of the solutions in the search space.

The results obtained from the algorithm for different

problem sets are given in Table 10. The values of

makespan obtained at convergence are compared

with different algorithms. From Table 10, 36 out of

40 problems give better results using Superbug algo-

rithm when compared with other standard algo-

rithms such as Sliding Time Window (STW), Abdel-

maguid Genetic Algorithm (AGA), Ulusoy Genetic

Algorithm (UGA), Proposed Genetic Algorithm

(PGA) by Subbaiah et al.[14] and Sheep Flock

Heredity Algorithm (SFHA)

Conclusion

The proposed algorithm is found to be robust for the

test problems and performs exceedingly well in

majority of the problems considered. The algorithms

present a good number of diversified solutions for the

set of problems considered. The diversity in the set of

solutions after every generation is preserved by a

combination of local and global search procedure.

The main contribution of this work is to prove the

superiority of solutions for the given scheduling

problem found by this algorithm as compared to

other optimization algorithms.

The future research includes application of this

algorithm for single or multiple objectives case

considering different criteria like mean flow time,

total tardiness, and maximum tardiness. The pro-

posed algorithm can be applied to the scheduling

problems in various manufacturing systems such as

cellular manufacturing. Furthermore, it is possible

that the proposed algorithm can be applied to opti-

mize multi machine environment and the dynamic

JSSP.

References

1. Abdelmaguid, T. F., Nassef, A. O., Kamal, B. A.,

and Hassan, M. F., A Hybrid GA/Heuristic

Approaches to the Simultaneous Scheduling of

Machines and Automated Guided Vehicles,

International Journal of Production Research,

42, 2004, pp. 267-281.

2. Anthony, R. J., Emergence: A Paradigm for

Robust and Scalable Distributed Applications,

Proceedings of the International Conference on

Automatic Computing, 2004, pp. 132-139.

3. Babaoglu, G., Canright, A., Deutsch, G. A. D.,

Caro, F., Ducatelle, L. M., Gambardella, N.,

Ganguly, M., Jelasity, R., Montemanni, A., and

Urnes, T., Design Patterns from Biology for

Distributed Computing, ACM Transactions on

Autonomous and Adaptive Systems, 1(1), 2006,

pp. 26–66.

4. Babaoglu, G., Binci, T., Jelasity, M., and Mon-

tresor, A., Firefly-Inspired Heartbeat Synchroni-

zation in Overlay Networks, Proceedings of Self-

Adaptive and Self-Organizing Systems (SASO),

2007, pp. 77–86.

5. Bilge, U., and Ulusoy, G., A Time Window

Approach to Simultaneous Scheduling of

Machines and Material Handling System in an

FMS, Operations Research, 43(6), 1995, pp.

1058-1070.

6. Chong, C. S., Malcolm Low, Y. H., Sivakumar,

A. I., and Gay, K. L., Using a Bee Colony Algo-

rithm for Neighborhood Search in Job Shop

Scheduling Problems, In: 21st European Con-

ference on Modeling and Simulation (ECMS

2007).

7. Enright, M. C., Robinson, D. A., Randle, G., Feil,

E. J., Grundmann, H., and Spratt, B. G., The

Evolutionary History of Methicillin Resistant

Staphylococcus Aureus (MRSA), Proceedings of

National Academy of Sciences, USA, 2002, pp.

7687–7692.

8. Jaros, J., Ohlidal, M., and Dvorak, V., An Evolu-

tionary Approach to Collective Communication

Scheduling, In Proceedings of the Conference on

Genetic and Evolutionary Computation (GEC-

CO), 2007, pp. 2037–2044.

9. Livermore, D. M., Bacterial Resistance: Origins,

Epidemiology, and Impact, Clinical Infectious

Diseases, 36, 2003, pp. S11–S23

10. Patel, A., Degesys, J., and Nagpal, R., Desyn-

chronization: The Theory of Self-Organizing

Algorithms for Round Robin Scheduling, Pro-

ceedings of Self-Adaptive and Self-Organizing

Systems (SASO), 2007, pp. 87–96.

11. Pham, D. T., Koc, E., Lee, J., and Phrueksanant,

J., Using the Bees Algorithm to Schedule Jobs

for a Machine, Proceedings of Eighth Interna-

Anandaraman et al. / A New Evolutionary Algorithm Based on Bacterial Evolution / JTI, Vol. 14, No. 1, Juni 2012, pp. 1-12

11

tional Conference on Laser Metrology, CMM and

Machine Tool Performance, 2007, pp. 430–439.

12. Spector, L., Klein, J., Perry, C., and Feinstein,

M., Emergence of Collective Behavior in

Evolving Populations of Flying Agents, Genetic

Programming and Evolvable Machines, 6(1),

2005, pp. 111–125.

13. Sreedhar Kumar, A. V. S., Veeranna, V., Durga

Prasad, B., and Dattatraya Sarma, B., Opti-

mization of FMS Schedules Using Non-

Traditional Techniques, International Journal of

Engineering Science and Technology, 2(12),

2010, pp. 7289-7296.
14. Subbaiah, K. V., Nageswara Rao, M., and

Narayana Rao, K., Scheduling of AGVs and Ma-
chines in FMS with Makespan Criteria Using

Sheep Flock Heredity Algorithm, International

Journal of Physical Sciences, 4(2), 2007, pp. 139-

148.

15. Truszkowski, W., Hinchey, M., Rash, J., and

Rouff, C., NASA’s Swarm Missions: The

Challenge of Building Autonomous Software, IT

Professional, 06(5), 2004, pp. 47–52.

16. Ulusoy, G., Sivrikaya-Serifoglu, F., and Bilge,

U., A Genetic Algorithm Approaches to the

Simultaneous Scheduling of Machines and

Automated Guided Vehicles, Computer and

Operations Research, 24(4), 1997, pp. 335-351.

17. Ziebuhr, W., Ohlsen, K., Karch, H., Korhonen,

T., and Hacker, J., Evolution of Bacterial Patho-

genesis, Cellular and Molecular Life Sciences,

56, 1999, pp. 719– 728.

