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Abstract: This paper deals with the vehicle routing problem with multiple trips and time windows 

(VRPMTTW). The problem combines two features to the basic vehicle routing problem (VRP): 

multiple trips and time windows. The basic VRP and its variants fall into hard combinatorial 

optimization problems. Therefore, many heuristics have been developed to solve large problems. 

Local search (LS) is one of the heuristics using a neighborhood structure in order to find a better 

solution. This paper focuses on the comparative study of neighborhood structures applied in LS for 

the VRPMTTW. Two classes of neighborhood structures are compared: Tour-based and 

permutation-based neighborhood structures. The tour-based neighborhood structures are the 

neighborhoods in which the moves are performed on the solution represented by a set of tours. The 

permutation-based neighborhood structures are the neighborhood structures in which the moves 

are carried out on the solution represented by a permutation of customers. Comparing the 

performance of the neighborhood structures uses two responses: (1) relative improvement in the 

objective function value and (2) computation time. The first response is used to measure 

effectiveness, while the second is used as efficiency. Based on the computational experiment 

results, it is generally revealed that the permutation-based neighborhood structures used in LS 

are more effective than the tour-based neighbourhood structures. However, the permutation-

based neighborhood structures are less efficient because they give higher computation times.  

 

Keywords: Vehicle routing problem, multiple trips, time windows, local search, neighborhood 

structure. 
  

 
Introduction 

 

The vehicle routing problem with multiple trips and 

time windows (VRPMTTW) is a variant of the basic 

vehicle routing problem (VRP) combining the 

following aspects: multiple trips and time windows. In 

the VRPMTTW, there are two main features added to 

the basic VRP: (1) each vehicle may perform more 

than one route or trip during a planning horizon, and 

(2) each customer has a time window indicated by the 

earliest and latest times to start the service. 

 

The VRPMTTW has been investigated intensively. 

Fleischmann [1], who introduced the VRP with 

multiple trips (VRPMT), has considered time win-

dows in his work. Brandão and Mercer [2] included 

additional features such as heterogeneous vehicles, 

site-dependent, maximum legal driving, maximum, 

and legal time breaks. Other studies on the 

VRPMTTW were as follows: Suprayogi [3], Suprayogi 

and Imawati [4], Suprayogi et al. [5], Suprayogi et al. 

[6], Azi et al. [7], Macedo et al. [8], Suprayogi et al. [9], 

Wang et al. [10], Hernandez et al. [11],  Cattaruzza et  
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al. [12], and Neira et al. [13]. Suprayogi and 

Mahaputra [14] and Suprayogi and Priyandari [15] 

discussed the VRPMTTW with simultaneous delivery 

and pickup. Ong and Suprayogi [16] and Suprayogi et 

al. [17] studied the VRPMTTW with backhauls. 
 

The VRPMTTW discussed in this paper is associated 

with a delivery service consisting of a depot and a set 

of customers. There is an unlimited number of 

vehicles stationed at the depot where they are 

homogeneous. The number of goods to be delivered to 

each customer is known during the planning horizon. 

The service-dependent times (i.e., the loading times at 

the depot for a particular route depend on the quantity 

to be delivered on the route) are considered. In 

addition, the time to start the service for each vehicle 

is made as latest as possible. Therefore, the time to 

start the service at the depot (loading activity) for the 

first route is not necessary to begin at time 0. A 

solution of the VRPMTTW consists of a set of tours 

where a tour is defined as a set of consecutive routes. 

A route composes a subset of customers where it starts 

and ends at the depot. Each tour is serviced exactly by 

one vehicle. The objective function to be minimized is 

the total cost, including vehicle cost and travel cost. In 

this paper, a mixed-integer linear programming 

(MILP) model is formulated to represent the 

VRPMTTW. 
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Several solution methods have been proposed for the 

VRPMTTW. One of them is local search (LS). LS is a 

solution approach based on the local improvement for 

the current best solution. LS requires an initial 

solution where it is set as the current best solution 

once the procedure starts.  In the improvement phase, 

LS explores neighbor solutions based on the current 

best solution using all possible moves of a particular 

neighborhood structure. A feasible neighbor solution 

better than the current best solution is accepted as the 

new best solution. The procedure in LS terminates 

where there is no improvement for all possible moves 

of the neighborhood structure. 

 

The solution method based on LS for the VRPMTTW 

is proposed in this paper. The customers in the 

solution are arranged in an array 𝐿(𝑡, 𝑟, 𝑘) where 

indices 𝑡, 𝑟, and 𝑘 denote tour, route, and position, 

respectively. Index 𝑡 is from 1 to 𝑁𝑇 where 𝑁𝑇 denotes 

the number of tours. Index r ranges from 1 to 𝑁𝑅(𝑡) 
where 𝑁𝑅(𝑡) is the number of routes of tour 𝑡. Index 

𝑘 starts from 1 to 𝑁𝑃(𝑡, 𝑟) where 𝑁𝑃(𝑡, 𝑟) is the 

number of positions on route 𝑟 of tour 𝑡. Note that 

𝐿(𝑡, 𝑟, 1) = 𝐿(𝑡, 𝑟, (𝑁𝑅(𝑡, 𝑟)) = 0 where it represents 

the depot. 

 

To illustrate the solution, consider a problem 

consisting of one depot (denoted by number 0) and a 

set of customers (denoted by numbers 1 to 9). The 

quantity of delivery demand. One of the solutions is 

represented in Figure 1. The solution consists of two 

tours.  The first tour constitutes two routes (0-3-7-6-0 

and 0-8-0), while the second has only one route (0-4-9-

1-2-5-0). 

Suprayogi et al. [6] have proposed eleven neighbor 

structures applied for the VRPMTTW where they are 

extensions of the basic neighborhood structures 

applied for the basic VRP, including relocation, 

exchange, and cross. The neighborhood structures are 

based on the moves performed on the original repre-

sentation of the solution consisting of a set of tours. In 

this paper, these neighborhood structures are called 

tour-based neighborhood structures. Figure 2 illustra-

tes permutation where it is similar to the chromosome 

representation used in the genetic algorithm. To gene-

rate neighbor solutions using a particular neighbor-

hood structure, the encoding procedure is used to 

convert the current best solution to its permutation 

representation. Then, moves are performed to gene-

rate new permutation representations. Finally, to 

obtain the neighbor solution, a decoding procedure is 

applied. In this paper, the neighborhood structures 

perform their moves on the permutation called 

permutation-based neighborhood structures. Figure 3 

illustrates the process of constructing a neighbor 

solution. 

 

In this paper, LS using tour-based neighborhood 

structure is called TBLS, while LS using permutation-

based neighborhood structure is called PBLS. Both 

TBLS and PBLS have their strengths and weak-

nesses. Because the moves are carried out on the best 

current solution, the neighbor solutions obtained by 

TBLS may be restricted due to resulting infeasibilities 

in terms of vehicle capacity and time window 

constraints. On the other hand, in PBLS, there is no 

infeasibility issue of the resulting neighbor solutions 

due to the assumption of an unlimited number of 
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Figure 1. Tour-based representation   Figure 2. Permutation-based representation 
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Figure 3. Process of constructing a neighbor solution 
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vehicles. In this paper, a comparison study is 

conducted in order to analyze the performance of 

neighborhood structures applied in local search (LS) 

for the VRPMTTW. Comparing the performance uses 

two responses: (1) relative improvement in the 

objective function value and (2) computation time. The 

first response is used to measure effectiveness, while 

the second is used as efficiency. 

 

Methods 
 

Mixed Integer Linear Programming Model 

 

The VRPMTTW considered in this paper consists of a 

set of 𝑛 customers 𝐶 = {1, 2, ⋯ , 𝑛} and a single depot 

denoted by number 0. The MILP model formulated in 

this paper is adapted from Azi et al. [7]. 

 

As in Azi et al. [7], to formulate into a MILP model, the 

VRPMTTW is represented in a complete directed 

graph 𝐺 = {𝑉, 𝐴} where 𝑉 is the set of nodes and 𝐴 is 

the set of arcs. The depot 0 is duplicated by a virtual 

depot represented by number 𝑛 +  1, Each route 

starts at depot 0 and ends at depot 𝑛 +  1. Virtual 

depot 𝑛 +  1 is included into 𝑉. Therefore, 𝑉 = {0} ∪
𝐶 ∪ {𝑛 + 1} = {0, 1, ⋯ , 𝑛, 𝑛 + 1}.  
 

According to Azi et al. [12], define 𝑅 = {1, 2, ⋯ , 𝑅′} as 

a set of routes. Notation 𝑅′ denotes the number of 

routes where it is determined in advance such that it 

is large enough to accommodate the maximum 

number of routes in the solution. The routes served by 

any vehicle are numbered in an increasing order, i.e., 

a vehicle serves route 𝑠 ∈ 𝑅 after route 𝑟 ∈ 𝑅 if and 

only if 𝑟 < 𝑠. 
 

To complete the formulation of the MILP model, the 

following notations are defined: 

Sets: 

𝑉 : set of nodes, 𝑉 = {0, 1, ⋯ , 𝑛, 𝑛 + 1} 
𝐴 : set of arcs 

𝑅 : set of routes, 𝑅 = {1, 2, ⋯ , 𝑅′} 
 

Parameters 

𝜔1 : cost per vehicle unit 

𝜔2 : cost per distance unit 

𝜙 : vehicle capacity 

𝜉𝑖𝑗 : distance on arc (𝑖, 𝑗) ∈ 𝐴  

(𝜉0𝑗 = 𝜉𝑖,𝑛+1 for 𝑖, 𝑗 ∈  𝑉; 𝜉0,𝑛+1 = 0) 

𝜏𝑖𝑗 : travel time on arc (𝑖, 𝑗) ∈ 𝐴  

(𝜏0𝑖 = 𝜏𝑛+1,𝑗 for 𝑖, 𝑗 ∈  𝑉; 𝜏0,𝑛+1 = 0) 

𝛿𝑖 : quantity of delivery demand at node 

𝑖 ∈  𝑉 (𝛿0 = 𝛿𝑛+1 = 0) 

𝛼𝑖 : earliest time to start the service at node 

𝑖 ∈ 𝑉 (𝛼0 and 𝛼𝑛+1 are the opening times 

for the depot or the lower bounds of the 

planning period) 

𝛽𝑖 : latest time to start the service at node 

 𝑖 ∈ 𝑉 (𝛽0 and 𝛽𝑛+1 are the closing times 

for the depot or the upper bounds of the 

planning period) 

𝛾 : loading time per unit 

𝜑 : unloading time per unit 

𝑀 : big positive number 

 

Decision variables: 

𝑋𝑖𝑗𝑟 : binary variable indicating whether arc 

(𝑖, 𝑗) ∈ 𝐴 is served by route 𝑟 ∈ 𝑅 or not 

(note that if 𝑋0,𝑛+1,𝑟 = 1, then route 𝑟 is 

empty) 

𝑍𝑟𝑠 : binary variable indicating whether route 

𝑟 ∈ 𝑅 is followed immediately by route 

𝑠 ∈ 𝑅 or not 

𝑇𝑖𝑟 : time to start the service at node 𝑖 ∈ 𝑉 on 

route 𝑟 ∈ 𝑅 

𝐿𝑟 : loading time at the depot for route 𝑟 ∈ 𝑅 

𝐷𝑖𝑗𝑟 : delivery load on arc (𝑖, 𝑗) ∈ 𝐴 of route 

 𝑟 ∈ 𝑅 
𝐾 : number of vehicles deployed 

 

The MILP model for the VRPMTTWSDP is formu-

lated as follow: 
 

Minimize 

𝑍 = 𝜔1𝐾 + 𝜔2 ∑ ∑ ∑ 𝜉𝑖𝑗𝑋𝑖𝑗𝑟𝑟∈𝑅𝑗∈𝑉𝑖∈𝑉   (1) 

subject to  
∑ 𝑋0𝑖𝑟 = 1; 𝑟 ∈ 𝑅𝑖∈𝑉\{0}    (2) 

∑ 𝑋𝑖,𝑛+1,𝑟 = 1; 𝑟 ∈ 𝑅𝑖∈𝑉\{𝑛+1}   (3) 

∑ 𝑋𝑖ℎ𝑟 = ∑ 𝑋ℎ𝑗𝑟𝑗∈𝑉\{0},𝑗≠ℎ ;𝑖∈𝑉\{𝑛+1},𝑖≠ℎ   

 ℎ ∈ 𝑉\{0, 𝑛 + 1}; 𝑟 ∈ 𝑅 

(4) 

𝑇𝑖𝑟 + 𝜑𝛿𝑖 + 𝜏𝑖𝑗 ≤ 𝑇𝑗𝑟 + 𝑀(1 − 𝑋𝑖𝑗𝑟); 

𝑖 ∈ 𝑉\{𝑛 + 1}, 𝑗 ∈ 𝑉\{0}, 𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅 

(5) 

𝑇𝑖𝑟 ≥ 𝛼𝑖; 𝑖 ∈ 𝑉\{0, 𝑛 + 1}, 𝑟 ∈ 𝑅 (6) 

𝑇𝑖𝑟 ≤ 𝛽𝑖; 𝑖 ∈ 𝑉\{0, 𝑛 + 1}, 𝑟 ∈ 𝑅  (7) 

𝑇0𝑟 ≥ 𝛼0; 𝑟 ∈ 𝑅 (8) 

𝑇0𝑟 + 𝐿𝑟 ≤ 𝛽0; 𝑟 ∈ 𝑅 (9) 
𝑇𝑛+1,𝑟 ≥ 𝛼𝑛+1; 𝑟 ∈ 𝑅 (10) 

𝑇𝑛+1,𝑟 ≤ 𝛽𝑛+1; 𝑟 ∈ 𝑅 (11) 

𝐿𝑟 = 𝛾 ∑ 𝐷0𝑖𝑟𝑖∈𝑉\{0,𝑛+1} ; 𝑟 ∈ 𝑅  (12) 

𝑇𝑛+1,𝑟 ≤ 𝑇0𝑠 + 𝑀(1 − 𝑍𝑟𝑠);  𝑟 ∈ 𝑅, 𝑠 ∈ 𝑅, 𝑟 < 𝑠 (13) 

𝑇𝑛+1,𝑟 ≥ 𝑇0𝑠 − 𝑀(1 − 𝑍𝑟𝑠); 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑅, 𝑟 < 𝑠 (14) 
∑ ∑ 𝑍𝑟𝑠𝑠∈𝑅,𝑟<𝑠 ≥ 𝑅′𝑟∈𝑅 − 𝐾  (15) 
∑ 𝑍𝑟𝑠 ≤ 1; 𝑟 ∈ 𝑅𝑠∈𝑅,𝑠>𝑟   (16) 
∑ 𝑍𝑟𝑠 ≤ 1; 𝑠 ∈ 𝑅𝑟∈𝑅,𝑠>𝑟   (17) 

𝐷𝑖,𝑛+1,𝑟 = 0;  𝑖 ∈ 𝑉\{𝑛 + 1}; 𝑟 ∈ 𝑅 (18) 
∑ ∑ 𝐷𝑖𝑗𝑟𝑟∈𝑅𝑖∈𝑉\{𝑛+1},𝑖≠𝑗 −
∑ ∑ 𝐷𝑗𝑖𝑟𝑟∈𝑅𝑖∈𝑉\{𝑛+1},𝑖≠𝑗 = 𝛿𝑗; 𝑗 ∈ 𝑉\{0, 𝑛 + 1}  

(19) 

∑ ∑ 𝐷0𝑖𝑟𝑟∈𝑅𝑖∈𝑉\{0,𝑛+1} = ∑ 𝛿𝑖𝑖∈𝑉\{0,𝑛+1}   (20) 

𝐷𝑖𝑗𝑟 ≤ 𝜙𝑋𝑖𝑗𝑟;  𝑖 ∈ 𝑉\{𝑛 + 1}, 𝑗 ∈ 𝑉\{0};  

𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅  

(21) 

𝑋𝑖𝑗𝑟 ∈ {0,1}; 𝑖 ∈ 𝑉\{𝑛 + 1}, 𝑗 ∈ 𝑉\{0};  

 𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅  

(22) 

𝑍𝑟𝑠 ∈ {0,1}; 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑅, 𝑟 < 𝑠 (23) 
𝑇𝑖𝑟 ≥ 0; 𝑖 ∈ 𝑉, 𝑟 ∈ 𝑅 (24) 
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𝐷𝑖𝑗𝑟 ≥ 0; 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑟 ∈ 𝑅  (25) 

𝐿𝑟 ≥ 0; 𝑟 ∈ 𝑅  (26) 

𝐾 ≥ 0 (27) 

  

The objective function to be minimized is the total cost 

represented in Eq. (1), where it is a sum of vehicle cost 

and travel cost. Constraint (2) guarantees that each 

route must start from the depot. Constraint (3) 

ensures that each route has to ends at the depot. 

Constraint (4) is used to ensure each customer is 

served by the same route. Constraint (5) defines the 

relationship between the times to start the service. 

Constraints (6)-(7) are time window constraints for 

each customer. Constraints (8)-(11) are time window 

constraints for the depot where they also represent the 

lower and upper bounds of the planning horizon). The 

loading times at the depot are defined by constraints 

(12). Constraints (13)-(17) are used to ensure the route 

sequence. Constraint (18) determines the delivery 

load when a vehicle returns at the depot. Constraint 

(19) is the flow conservation constraint for the delivery 

quantity at each customer. Constraint (20) is used to 

define the total load from the depot. The vehicle 

capacity constraint is given in constraint (21). Con-

straints (22)-(27) are constraints related to decision 

variable values.  

 

Initial Solution 

 

LS requires an initial solution. In this paper, sequen-

tial insertion (SI) algorithm is applied. Steps of the 

sequential insertion are given in algorithm SI. 

 

Algorithm SI 

1. Set 𝑡 = 1 and 𝑁𝑇 = 1. 

2. Set 𝑟 = 1 and 𝑁𝑅(𝑡) = 1.  

3. Select an unassigned customer 𝑗𝑚𝑖𝑛 with the 

minimum latest time to start the service.  

4. Set 𝐿(𝑡, 𝑟, 2) = 𝑗𝑚𝑖𝑛. Update the solution. 

5. If all customers have been assigned, then go to 13. 

6. Try to insert unassigned customers to each 

position of the current route. If there are feasible 

insertions with respect to the vehicle capacity and 

time window constraints, then go to 7. Otherwise, 

go to 8.  

7. Select an unassigned customer 𝑗𝑚𝑖𝑛 and a posi-

tion of current route 𝑘𝑚𝑖𝑛 giving the minimum 

total distance. Set 𝐿(𝑡, 𝑟, 𝑘𝑚𝑖𝑛) = 𝑗𝑚𝑖𝑛. Update 

the solution. Go to 5. 

8. Set 𝑟 = 𝑟 + 1 and 𝑁𝑅(𝑡) = 𝑁𝑅(𝑡) + 1.  

9. Try to assign unassigned customers to the current 

route. 

10. If there are feasible assignment with respect to the 

time window constraint, then go to 11. Otherwise, 

set 𝑟 = 𝑟 – 1, 𝑁𝑅(𝑡) = 𝑁𝑅(𝑡) – 1 and go to 12.  

11. Select an unassigned customer 𝑗𝑚𝑖𝑛 with the 

minimum total distance time. Set 𝐿(𝑡, 𝑟, 1) = 𝑗𝑚𝑖𝑛. 

Update the solution. Go to 5. 

12. Set 𝑡 = 𝑡 + 1 and 𝑁𝑇 = 𝑁𝑇 + 1. Go back to step 2. 

13. Perform a backward procedure to determine the 

latest arrival times, the latest times to start the 

service, and the latest departure times   
14. Calculate the objective function value. Stop. 
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Figure 4. Inter-tour relocation 1-0 
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Figure 5. Inter-tour relocation 1-0 causing a tour elimina-
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Figure 6. Cross 
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Figure 7. Cross causing a tour elimination 
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Neighborhood Structures 
 

As mentioned before, LS explores neighbor solutions 
based on the current best solution in order to seek the 
new best solution. The exploration utilizes a parti-
cular neighborhood structure. In this paper, five 
neighborhood structures used in TBLS are given in 
Table 1. Two neighborhood structures can reduce the 
number of tours from five neighborhood structures: 
inter-tour relocation 1-0 and cross. Figure 4 and 
Figure 5 show illustrations of inter-tour relocation 1-0 
(IRR 1-0), while Figure 6 and Figure 7 depict illus-
trations of the cross (CRS).  
 

There are eight neighborhood structures used in 
PBLS where they are shown in Table 2. Figure 8 and 
Figure 9 illustrate relocation 1-0 (REL 1-0) and 
Exchange 1-1 (EXC 1-1). 
 
Local Search 
 

In the search process, LS can apply either first impro-
vement or best improvement strategies. In this paper, 
both proposed TBLS and PBLS apply the first impro-
vement strategy. 
  

Steps of TBLS are shown in Algorithm TBLS. In 
TBLS, the feasibility check is performed for each 
neighbor solution generated by a particular move. If a 
neighbor solution is infeasible for a particular move, 
the procedure searches for the next possible move.  
 
Steps of PBLS are shown in Algorithm PBLS, which 
includes both encoding and decoding procedures. As 

mentioned before, the encoding procedure transforms 
the original representation of the current best solution 
to its permutation representation. It is simply per-
formed by creating a permutation of customers 
starting from the customer appearing on the first 
route of the first tour of the solution. The decoding 
procedure is the opposite procedure of the encoding 
procedure, where it converts the permutation repre-
sentation to the original solution representation of the 
neighbor solutions. The procedure is similar to the 
sequential insertion where customers are added one 
by one to the solution based on their order in the 
permutation. The vehicle capacity and time window 
constraints are considered in building routes and 
tours. Steps of the decoding procedure are given 
in Algorithm Decoding. By applying the decoding 
procedure, the neighbor solutions produced by PBLS 
are always guaranteed to be feasible.  
 
Algorithm TBLS 

1. Create 𝑆0 using SI. 

2. Set 𝑆∗ = 𝑆0 and 𝑓(𝑆∗) = 𝑓(𝑆0).  
3. Set  𝑆′ = 𝑆∗.  

4. Set a move as the first move. 

5. Generate neighbor solution 𝑆 based 𝑆′ on using the 

move. 

6. If neighbor solution 𝑆 is infeasible then go to 8. 

7. If 𝑓(𝑆) < 𝑓(𝑆∗), then, set 𝑓(𝑆∗) = 𝑓(𝑆) and 𝑆∗ =
𝑆. Go to 3. 

8. Go to next move. 

9. If the last move has not been executed, go to 5. 

Otherwise, stop. 

Table 1. Neighborhood structured used by TBLS  

Neighborhood structure Abbreviation Description 

Inter-tour relocation 1-0 IRR 1-0 Relocate or insert one customer from position 𝑘1 on route 𝑟1 of tour 𝑡1 to position 

𝑘2 on route 𝑟2 of tour 𝑡2 (𝑡2 ≠ 𝑡1) 

Intra-tour relocation 1-0 IAR 1-0 Relocate or insert one customer from position 𝑘1 on route 𝑟1 of tour 𝑡1 to position 

𝑘2 on route 𝑟2 of tour 𝑡1 

Inter-tour exchange 1-1 IRE 1-1 Exchange or swap one customer at position 𝑘1 on route 𝑟1 of tour 𝑡1 with 

another customer at position 𝑘2 on route 𝑟2 of tour 𝑡2 (𝑡2 ≠ 𝑡1) 

Intra-tour exchange 1-1 IAE 1-1 Exchange or swap one customer at position 𝑘1 on route 𝑟1 of tour 𝑡1 with 

another customer at position 𝑘2 on route 𝑟2 of tour 𝑡1 

Cross CRS Exchange or swap a segment of customers starting at position 𝑘1 on route 𝑟1 of 

tour 𝑡1 with another segment of customers starting at position 𝑘2 on route 𝑟2 of 

tour 𝑡2 (𝑡2 ≠ 𝑡1) 

 
Table 2. Neighborhood structures used by PBLS 

Neighborhood structure Abbreviation Description 

Relocation 1-0 REL 1-0 Move one customer at positon 𝑖 to position 𝑗 (𝑗 ≠ 𝑖) 
Relocation 2-0 REL 2-0 Move two consecutive customers starting at positon 𝑖 to position 𝑗 (𝑗 ≠ 𝑖) 
Relocation 3-0 REL 3-0 Move three consecutive customers starting at positon 𝑖 to position 𝑗 (𝑗 ≠ 𝑖) 
Exchange 1-1 EXC 1-1 Exchange one customer at position 𝑖 with another customer at position 𝑗 (𝑗 > 𝑖)  
Exchange 2-2 EXC 2-2 Exchange two consecutive customers starting at position 𝑖 with other two 

consecutive customers starting at position 𝑗 (𝑗 > 𝑖)  
Exchange 3-3 EXC 3-3 Exchange three consecutive customers starting at position 𝑖 with other three 

consecutive customers starting at position 𝑗 (𝑗 > 𝑖) 
Inversion INV Invert the order of customers from position 𝑖 to position 𝑗 (𝑗 > 𝑖) 
Shift SHI Shift customers starting at position 𝑖 to position 𝑗 (𝑗 ≠ 𝑖) 
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Algorithm PBLS 

1. Create 𝑆0. 

2. Set 𝑆∗ = 𝑆0 and 𝑓(𝑆∗) = 𝑓(𝑆0).  

3. Set 𝑆′ = 𝑆∗.  

4. Set a move as the first move. 

5. Encode 𝑆′ to produce 𝑋′.   

6. Generate 𝑋 based 𝑋′ on using the first move. 

7. Decode 𝑋 to produce 𝑆. 

8. If 𝑓(𝑆) < 𝑓(𝑆∗), then, set 𝑓(𝑆∗) = 𝑓(𝑆), 𝑆∗ = 𝑆. 

Go to 3. 

9. Go to next move. 

10. Set a move is the next move. 

11. If the last move has not been executed, go to 6. 

Otherwise, stop 

 

Algorithm Decoding  

1. Set 𝑗 = 1. 

2. Set 𝑡 = 1 and 𝑁𝑇 = 1. 

3. Set 𝑟 = 1 and 𝑁𝑅(𝑡) = 1.  

4. Set 𝑘 = 2. 

5. Set 𝐿(𝑡, 𝑟, 𝑘) = 𝑃(𝑗). If it is feasible, then update 

the solution. Otherwise, go to 8. 

6. If all customers have been assigned, then go to 9. 

7. Set 𝑗 = 𝑗 + 1 and 𝑘 = 𝑘 + 1. Set 𝐿(𝑡, 𝑟, 𝑘) = 𝑃(𝑗). If 

it is feasible, then update the solution and go to 6. 

Otherwise, set 𝑟 = 𝑟 + 1, 𝑁𝑅(𝑡) = 𝑁𝑅(𝑡) + 1. Go to 4. 

8. Set 𝑡 = 𝑡 + 1 and 𝑁𝑇 = 𝑁𝑇 + 1. Go to 2. 

9. Perform a backward procedure to determine the 

latest arrival times, the latest times to start the 

service, and the latest departure times.  

10. Calculate the objective function value. Stop 

 

Results and Discussions 
 

Solver and Test Instances 

 

LS is coded using Visual Basic 6 and it run on a PC 

with the following specifications: Processor Intel(R) 

Core(TM) i7-9700T CPU @ 2.00GHz, 1992 Mhz, 8 

Core(s), 8 Logical Processor(s), Installed Physical 

Memory (RAM):16.0 GB, and Microsoft Windows 10 

Home Single Language Operating system. 

 

Test instances are generated from Solomon’s 

instances consisting of 100 customers (Solomon [18]). 

There are six classes of Solomon’s instances depen-

ding on the customer location and the length of the 

planning horizon. In this paper, Solomon’s instances  

of C2 (C201-C208), R2 (R201-211), and RC2 (RC201-

RC208) are used to generate large test instances by 

taking the first 25 and 40 customers. Some modifi-

cations are made from the original instances. The 

service times are discarded. The loading time per unit 

at the depot and the loading time per unit at the 

customers are set as 1. The cost per vehicle unit and 

the cost per distance unit are set as 10000 and 1, 

respectively. Two vehicle capacities are applied for 

each instance, i.e., 50 and 100. Therefore, the total test 

instances are 108.  

 

In order to compare with the optimal solution 

obtained by solving the MILP model, a set of small test 

instances consisting of 18 instances are derived from 

R201, R205, and R211 by taking the first 5 to 10 

customers. The MILP model is solved using LINGO 

17 run on the same PC. In order to solve the MILP 

model, the number of routes 𝑅′ has to be determined 

in advance for each instance. The computation time is 

limited to 7200 seconds. 

 

Illustrative Example 

 

The following subsection gives an illustrative example 

of the VRPMTTW. Instance R205-008 is used for the 

illustrative example. The optimal solution obtained by 

solving the MILP model is depicted in Figure 10 

where only nonzero-valued variables are displayed.  

The total cost is 10179.58. Based on values of variable 

X, the solution consists of two routes. The first route 

(route 1) is D-2-5-8-7-6-D and the second one (route 2) 

is D-4-3-1-D. These routes are performed by a single 

vehicle (tour) where the second route follows the first 

route (denoted by variable Z). Loading times at depot 

for the first and second routes (denoted by variable L) 

are 50 and 42, respectively. The total loads for each 

customer pair on each route are given in values of 

variable D.  

 

The solution produced by LS using relocation 1-0 

(REL 1-0) is shown in Figure 11. This solution is 

optimal. Information including arrival times, times to 

start the service, and departure times are also given.  

 

 
 

Figure 10. MILP’s solution 
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Computational Results for Small Test Instances 

 

The results for the MILP model are shown Table 3. 

Column  𝑅’ indicates the given number of routes. 

Columns OFV and CT under MILP represents the 

objective function value and computation time (in 

seconds). Symbol asterisk (*) indicates that the 

solution is optimal. PBLS are run only for REL 1-0 

and EXC 1-1, while TBLS are run only for IRR-1-0 

and CRS.  Results for PBLS and TBLS are also given 

in Table 3.  Gaps of OFV compared to MILP are also 

displayed. Based on average gaps, it is shown that 

PBLS (REL 1-0 and EXC 1-1) is more effective than 

TBLS (IRR 1-0 and CRS). Moreover, REL 1-0 

outperforms compared to others (average gap is 

10.97%). 

 
Computational Results for Large Test Instances 

 

The computational experiments for large test 

instances are carried out on 108 test instances. 

Because each neighborhood is run on different test 

instances, then the OFVs are different. In order to 

make fair comparisons, then a measure called the 

relative improvement (RI) is introduced. It is defined 

as 𝑅𝐼 = |100 (𝑂𝐹𝑉𝑁𝑆 − 𝑂𝐹𝑉𝑆𝐼) 𝑂𝐹𝑉𝑆𝐼⁄ | where 𝑂𝐹𝑉𝑁𝑆 

and 𝑂𝐹𝑉𝑆𝐼 represent the objective function value 

(OFV) for neighborhood structure and SI, respectively. 

It is used as the measure of effectiveness.  

 

Table 4 summarizes the computational results for 

PBLS and TBLS. The values of RI are given in column 

RI, while the computation times are displayed in 

column CT. For each neighborhood structure, the 

results indicate the average values for the instances 

belonged to their associated group.  Columns IS = 25 

and IS = 40 denote the results for 25-customer and 40-

customer instances. Columns VC = 100 and VC = 500 

indicate the results for instances with the vehicle 

capacities of 100 and 500.  

 
According to Table 4, it is seen that, except for shift 
(SHI), PBLS gives higher average RI. It means that 

PBLS, in general, is more effective compared to TBLS. 
Relocation 1-0 (REL 1-0) is the most effective neigh-
borhood structure where its average RI is 13.32%. 

However, except for shift (SHI), PBLS has higher 
computation times. In addition, the computation time 
for PBLS increases more rapidly compared to TBLS. 

It is revealed that PBLS is less efficient compared to 
TBLS. 
 

Conclusions 
 
This paper has discussed the vehicle routing problem 

with multiple trips and time windows (VRPMTTW). 
The VRPMTTW discussed includes service-depen-
dent times and allows the time to start the service for 

each vehicle to be made as latest as possible. A mixed-
integer linear programming (MILP) model has been 
proposed to represent the VRPMTTW. 

 
In this paper, LS with permutation-based neigh-
borhood structure (PBLS) has been proposed. 

Furthermore, their performance has been compared 
against LS with tour-based neighborhood structure 

(TBLS).  

 

Figure 11. Solution obtained by LS with relocation (1) 
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Based on the computational experiment results, it is 

shown that PBLS is more effective than TBLS. 

However, compared to the optimal solutions, the 

effectiveness of PBLS is still low. PBLS is less efficient  

than TBLS. It needs higher computational time than 
the TBLS. In addition, the computation time for PBLS 
increases more rapidly as the problem size increases.  

 

In this paper, the permutation-based neighborhood 

structures are applied for local search (LS). However, 

LS has a weakness where the solution will be trapped 

on the local optimal. Therefore, in order to improve 

their effectiveness, the permutation-based neighbour-

hood structures can be applied for the metaheuristics 

such as variable neighborhood search (VNS), 

simulated annealing (SA), and tabu search (TS). Of 

course, their reasonable computation time should be 

maintained in order to be competitive.  

 

References 
 

1. Fleischmann, B. The Vehicle Routing Problem 
with Multiple Use of the Vehicles, Working paper, 

Fachbereich Wirtschaftswissenschaften. Univer-

sität Hamburg, 1990. 
2. Brandão, J. and Mercer, A., A Tabu Search 

Algorithm for the Multi-trip Vehicle Routing and 

Scheduling Problem, European Journal of Opera-
tional Research, 100(1), 1997, pp. 180–191.  

3. Suprayogi, S., Algoritma Sequential Insertion 
untuk Memecahkan Vehicle Routing Problem 
dengan Multiple Trips dan Time Windows, Jur-
nal Teknik dan Manajemen Industri, 23(3), 2003, 
pp. 30–46. 

4. Suprayogi, S., and Imawati, D., Algoritma Sequ-
ential Insertion dengan Forward dan Backward 
Pass untuk Memecahkan Vehicle Routing 
Problem with Multiple Trips and Time Windows, 
Jurnal Teknik dan Manajemen Industri, 25(1), 
2005, pp. 41–54. 

5. Suprayogi, S., Hardianto, A. and Yamato, H., 
Local Search and Genetic Algorithm Techniques 
for Solving Vehicle Routing Problem with 
Multiple Trips and Time Windows, in Proceedings 
of the 1st International Conference on Operations 
and Supply Chain Management, 2005, pp. J17–
J24. 

Table 3. Comparison results for MILP, PBLS, and TBLS 

 MILP  OFV Gap (%) 

Instance 𝑅′ OFV  CT  REL 1-0 EXC 1-1 IRR 1-0 CRS REL 1-0 EXC 1-1 IRR 1-0 CRS 

R201-005 2 10156.59 * 0.13  10173.67 20156.59 20157.26 20164.62 0.17 98.46 98.46 98.54 
R201-006 2 10157.16 * 0.14  10180.19 10180.19 20157.83 20165.19 0.23 0.23 98.46 98.53 
R201-007 2 10188.39 * 0.17  20188.39 20200.17 20189.06 20215.22 98.15 98.27 98.16 98.41 
R201-008 2 10199.83 * 0.27  10199.83 10199.83 10199.83 10199.83 0.00 0.00 0.00 0.00 
R201-009 3 10247.52 * 4.24  10286.89 20247.52 20232.51 20286.89 0.38 97.58 97.44 97.97 
R201-010 3 10273.34 * 5.34  20259.00 20273.34 20259.00 20259.00 97.20 97.34 97.20 97.20 
R205-005 2 10134.25 * 0.14  10142.26 20153.63 20157.26 20164.62 0.08 98.87 98.90 98.97 
R205-006 2 10142.83 * 0.21  10142.83 20165.86 20157.83 20165.19 0.00 98.82 98.74 98.81 
R205-007 2 10169.83 * 0.50  10173.47 10187.81 20188.39 20195.83 0.04 0.18 98.51 98.59 
R205-008 2 10179.58 * 1.28  10179.58 10193.91 10193.91 10193.91 0.00 0.14 0.14 0.14 
R205-009 2 10220.18 * 29.38  10220.18 10220.18 10220.18 10220.18 0.00 0.00 0.00 0.00 
R205-010 3 10252.44 * 312.92  10253.08 10265.59 20271.17 20258.43 0.01 0.13 97.72 97.60 
R211-005 2 10134.25 * 0.27  10156.35 10142.26 10164.62 10164.62 0.22 0.08 0.30 0.30 
R211-006 2 10134.81 * 0.37  10142.83 10142.83 10165.18 10165.18 0.08 0.08 0.30 0.30 
R211-007 2 10156.02 * 0.77  10196.44 10166.02 10221.75 10221.75 0.40 0.10 0.65 0.65 
R211-008 2 10161.54 * 1.55  10171.54 10179.58 10179.58 10179.58 0.10 0.18 0.18 0.18 
R211-009 3 10202.15 * 16.11  10212.15 10220.18 10220.18 10220.18 0.10 0.18 0.18 0.18 
R211-010 3 10237.64 * 6823.56  10247.64 10255.68 10274.77 10274.77 0.10 0.18 0.36 0.36 

Average  10186.02    11307.02 13530.62 15200.57 15206.39 10.96 32.82 49.21 49.26 
Std. dev.  44.36    3244.19 4852.52 5141.13 5147.12 31.55 47.59 50.39 50.45 

 
Table 4. Computational results using large test instances for PBLS and TBLS (average of 108 test instances) 

Neighborhood 
structure 

RI (%) CT (Sec.) 

VC = 100 VC = 500 All 
instances 

VC = 100 VC = 500 All 
instances IS = 25 IS = 40 IS = 25 IS = 40 IS = 25 IS = 40 IS = 25 IS = 40 

REL 1-0 7.72 6.73 9.47 3.67 6.90 5.39 36.33 5.19 35.90 20.70 
REL 2-0 9.73 9.78 9.31 8.57 9.35 3.30 27.75 3.48 25.47 15.00 
REL 3-0 22.36 12.82 10.66 7.44 13.32 3.22 18.55 2.59 18.40 10.69 
EXC 1-1 9.82 5.84 4.80 4.43 6.22 2.27 18.52 2.02 14.28 9.27 
EXC 2-2 12.84 8.09 1.69 4.28 6.73 1.38 8.24 1.06 5.99 4.17 
EXC 3-3 13.81 6.41 0.10 1.14 5.37 0.82 4.77 0.53 3.56 2.42 
INV 8.68 4.16 1.80 1.28 3.98 2.50 16.00 2.17 12.66 8.33 
SHI 0.01 0.80 0.04 0.02 0.22 0.47 1.96 0.48 1.88 1.20 
IRR 1-0 0.18 0.27 0.34 1.33 0.53 0.82 2.12 0.93 2.86 1.68 
IAR 1-0 0.05 0.05 0.08 0.05 0.06 0.34 0.82 0.37 1.04 0.65 
IRE 1-1 0.03 0.03 0.02 0.02 0.02 0.17 0.32 0.13 0.28 0.22 
IAE 1-1 0.02 0.02 0.00 0.01 0.01 0.19 0.37 0.11 0.36 0.26 
CRS 2.25 0.94 1.67 1.19 1.51 0.34 0.75 0.37 1.04 0.63 

 
 



Kenaka et al./ Comparison Study of Neighborhood Structures in Local Search / JTI, Vol. 23, No. 2, Dec 2021, pp. 161-170 

 

 

169 

6. Suprayogi, S., Imawati, D., and Hardianto, A., 

Teknik Local Search untuk Pemecahan Vehicle 

Routing Problem with Multiple Trips and Time 

Windows, Jurnal Teknik dan Manajemen Indus-

tri, 27(2), 2007, pp. 57–75. 

7. Azi, N., Gendreau, M., and Potvin, J.-Y., An Exact 

Algorithm for a Vehicle Routing Problem with 

Time Windows and Multiple Use of Vehicles, 

European Journal of Operational Research, 

202(3), May 2010,pp. 756–763. 

8. Macedo, R., Alves, C., Valério de Carvalho J. M., 

Clautiaux, F., and Hanafi, S., Solving the Vehicle 

Routing Problem with Time Windows and 

Multiple Routes Exactly using a Pseudo-Poly-

nomial Model, European Journal of Operational 

Research, 214(3), Nov 2011, pp. 536–545. 

9. Suprayogi, S., Hidayat, Y. A., and Imawati, D.,  

Simulated Annealing untuk Pemecahan Masalah 

Rute dan Jadwal Kendaraan dengan Trip Maje-

muk dan Jendela Waktu, in Proceedings of the 6th 

National Industrial Engineering Conference 

(NIEC-6), 2011, pp. 242–249. 

10. Wang, Z., Liang, W., and Hu, X., A Metaheuristic 

Based on a Pool of Routes for the Vehicle Routing 

Problem with Multiple Trips and Time Windows, 

Journal of Operational Research Society, 65(1), 

Jan 2014, pp. 37–48. 

11. Hernandez, F., Feillet, D., Giroudeau, R., and 

Naud, O., Branch-and-price Algorithms for the 

Solution of the Multi-trip Vehicle Routing Pro-

blem with Time Windows, European Journal of 

Operational Research, 249(2), Mar. 2016, pp. 551–

559. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. Cattaruzza, D., Absi, N., and Feillet, D., The 

Multi-trip Vehicle Routing Problem with Time 

Windows and Release Dates, Transportation 

Science, 50(2), May 2016, pp. 676–693. 

13. Neira, D. A., Aguayo, M. M., de la Fuente, R., and 

Klapp, M. A.,  New Compact Integer Program-

ming Formulations for the Multi-trip Vehicle 

Routing Problem with Time Windows, Computers 

& Industrial Engineering, 144, January 2019, p. 

106399. 

14. Suprayogi, S., and Mahaputra, M. S.,  Pemecahan 

Masalah Rute Kendaraan dengan Trip Majemuk, 

Jendela Waktu dan Pengantaran-Penjemputan 

Simultan Menggunakan Algoritma Genetika, 

J@ti Undip Jurnal Teknik Industri, 12(2), Jul 

2017, p. 95. 

15. Suprayogi, S., and Priyandari, Y., Tabu Search for 

the Vehicle Routing Problem with Multiple Trips, 

Time Windows, and Simultaneous Delivery-

Pickup, Jurnal Teknik Industri, 19(2), 2017, pp. 

75–82. 

16. Ong, J. O., and Suprayogi, S., Vehicle Routing 

Problem with Backhaul, Multiple Trips and Time 

Window, Jurnal Teknik Industri, 13(1), 2011, pp. 

1–10. 

17. Suprayogi, S., Cahyono, R. T., and Lubis A. T., 

Multi-trip Vehicle Routing Problem with 

Backhauls and Time Windows, in Proceeding of 

the 9th International Conference on Operations 

and Supply Chain Management, 2019. 

18. Solomon, M.M, Algorithms for the Vehicle 

Routing and Scheduling Problems with Time 

Window Constraints, Operational Research, 

35(2), 1987, pp. 254–265. 

 

 

 

 

 


