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Abstract: The characteristics considered in this study are probabilistic demand, perishable 

products, and warehouse constraints for multi-item inventory models. This condition occurs in 

several industries that consider perishable factors and warehouse constraints, namely companies 

that produce food, food sales agents, and retail that sell goods to end customers. The Karush-Kuhn-

Tucker Condition approach was used to solve the warehouse capacity problem to find the optimum 

point of a constrained function. The results of the developed inventory model provide two optimal 

ordering times, namely ordering time-based on warehouse capacity and joint order time, and the 

two ordering time values will be compared to determine which ordering time is optimal. In 

addition, the sensitivity analysis to the model was done to analyse the total inventory costs in a 

planning horizon, the time between goods ordering from one cycle to the next cycle, and the 

number of items that will expire. The parameters to be changed for the sensitivity test were 

warehouse constraint, a fraction of good condition goods, holding costs per unit per period, and all 

unit discount factors. The sensitivity analysis was done to see the behaviour of the total cost, time 

to order changes, and the quantity of perished products. The result of model testing and sensitivity 

analysis showed that total cost, based on joint order, is sensitive to the fraction of good condition 

products, discount, and holding cost.  The joint order was not sensitive to the warehouse capacity. 

In general, the model was perceived as able to describe the behaviour of the model components.  
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Introduction 

 

Inventory can be defined as a stock of goods stored in 

a warehouse to meet future needs. These inventory 

forms can be classified as raw materials, work-in-

process materials, finished goods, packages, and 

general supplies [1]. Generally, all companies always 

have inventory. In financial terms, inventory is an 

asset but also an expense. The existence of inventory 

can be a burden because it is a form of waste. 

Therefore, good inventory management is essential 

for a company because it is related to the balance 

between service levels on the one hand and costs on 

the other [2]. Criteria performance of inventory 

management can be defined by three aspects based on 

actors in system inventory. The three criteria are 

service level (availability and serviceability) and for 

consumers, total costs for management, and inventory 

turnover ratio for owners [3].  

 

Small to medium-scale retailers that sell consumer 

products such as mini markets generally have two 

limitations [4].  
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First, the products sold are generally dominated by 
food products with a short product life (generally, food 
products are perishable products). Second, there is a 
very significant limited storage space. Both limita-
tions significantly affect the inventory system, 
especially determining the lot size for ordering goods 
in the replacement process. On the other hand, taking 
advantage of discounts offered by suppliers will 
generally encourage large order sizes. The impact of 
discount on inventory system is decreasing purchase 
price and holding cost per unit of product (generally 
holding cost (stock carrying cost) per unit is 
proportional to the price of the product) [2]. Therefore, 
retail company management such as minimarkets 
needs to optimize their inventory system by consi-
dering the trade-off between supplier discount offers 
and two existing limitations. 
 
Research on inventory systems that consider factors 
such as expiry date, joint orders, and all unit discounts 
have been carried out, for example, [5, 6, 7,8], and [9]. 
Research on inventory control models that considers 
limited warehouse capacity on deterministic demand 
has been carried out by [10], while probabilistic 
demand has been carried out by [11] and [12]. Inven-
tory models with probabilistic demand are considered 
more representative of actual conditions [13]. Here, to 
deal with the probabilistic demand, organizations 
usually prepare safety stock, which is determined 
directly from a forecast ([14, 15]). 
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From the studies of [10, 11], and [12] that have been 

done, all of them have not included the perishable 

factor as consideration for determining optimal 

ordering lot size. A study considers multi-item, space 

capacity, and perishable items but does not include 
discount, with the probabilistic nature presented in 

uniform distribution [16]. This study intended to 

develop an inventory model suitable for the retail 

industry by considering product types (multi-item), 

the nature of probabilistic demand, expired factor 

(perishable product), all-unit discount, and limited 

warehouse capacity. 
 

Methods 
 

his study aimed to develop a multi-item probabilistic 

inventory model that considers the expiration factor 

(perishability), the all-unit discount, and limited 
warehouse capacity. A multi-item probabilistic inven-

tory model that considers expiry factors refers to [7] 

and [2]. The model developed in [7] is an EOQ inven-

tory model that considers the expiration period for a 

multi-item inventory model. Meanwhile, Koswara 

and Lesmono [2] have developed a probabilistic inven-

tory model that considers the all-unit discount and 
limited warehouse capacity to determine the optimal 

time between orders. The numerical data used in this 

study were taken from the research of [2] by adding 

expiration date data. 

 

Inventory models that consider limited warehouse 
capacity will generally form a nonlinear function with 

constraints (nonlinear programming). The constraint 

function can be a linear or nonlinear function, either 

in an equation or an inequality. Two general ap-

proaches can solve this inventory model problem, i.e., 

a calculus-based optimization approach and a heu-

ristic or metaheuristic algorithm-based optimization 
approach. First, solve nonlinear programming pro-

blems with a calculus optimization approach gene-

rally using the Karush-Kuhn-Tucker (KKT) Condi-

tions or the Lagrange multiplier method. Second, a 

metaheuristic approach (such as a genetic algorithm, 

simultaneous annealing algorithm, ant colony algo-

rithm, and others) can be chosen to solve nonlinear 
programming if the model being evaluated is included 

in the NP-Hard problem, or there is fast computation 

time required. The solution-solving method used in 

this study is the KKT Conditions method. The KKT 

Conditions method was chosen because this method is 

more suitable for solving nonlinear problems with 

constraints in the form of inequality. Meanwhile, the 
Lagrange Multiplier method, which is more suitable 

for solving nonlinear problems, is in equations [17]. 
 

The decision variable for a multi-item inventory model 

with a warehouse capacity limitation is the time 

between orders (replacement). There are two terms of 

time between orders. First, the time between orders is 

defined as result of dividing available warehouse 

capacity (in terms of volume or weight) and total 

demand volume (the result from multiplying total 

demand by volume or weight of each type of product), 

hereinafter referred to as 𝑇𝑚𝑎𝑥. Second, the time 

between orders is defined as time of joint orders, 

hereinafter referred to as the 𝑇𝑜𝑝𝑡. The 𝑇𝑜𝑝𝑡 is obtained 

from the first derivative of the total cost function 

against 𝑇 𝑚𝑎𝑥variable. If 𝑇𝑜𝑝𝑡 value is smaller than 

𝑇𝑚𝑎𝑥 value, decision variable is the 𝑇𝑜𝑝𝑡. Conversely, if 

𝑇𝑜𝑝𝑡 value is greater than 𝑇𝑚𝑎𝑥, then the 𝑇𝑜𝑝𝑡 solution 

violates the constraint function so that the optimal 

decision variable for the model is 𝑇𝑚𝑎𝑥 value. The 

inventory policies involve order quantities and total 

cost inventory, which are based on these 𝑇𝑚𝑎𝑥 and 

𝑇𝑜𝑝𝑡values. 

 

This study carried out an inventory policies compa-

rison between the proposed model and the models 

from [2] and [7]. Moreover, sensitivity tests were 
conducted on some parameters that affect the inven-

tory policy trade-off. These parameters are warehouse 

capacity, discount factor, good goods fraction, and 

storage (holding) costs. 

 

Model Assumptions 

 
The assumptions used in this study are as follows: 

1. All types of items are ordered from same supplier 

(joint order) and have same lead time (𝐿). 

2. The good fraction value (𝜃𝑖) is 90% for all types of 

items.  

3. The existence of expired items has consequences 

on two cost components, namely cost of shortages 

and cost of expiration: 

a. Consequences on shortage costs: the existence 

of expired goods causes reduced availability of 

goods to meet all demand, so that there is a 
demand that cannot be fulfilled. 

b. Consequences on expiry costs: items entering 

expiry date will be sold at a lower price than 

purchase price, resulting in a loss equal to the 

gap between purchase cost and selling price 

items (on expired date) 

4. All expired items will be sold at the end of period 

𝑡1𝑖
 simultaneously so that there are no expired 

items left during period 𝑡2𝑖
. 

5. All expired items can still be sold to certain parties 

at 𝐽𝑖 price (where 𝐽𝑖 < 𝑃𝑖). This assumption means 

that expired items still can be used (sold), but not 

for consumption (food).  

6. Volume size of each item is known with certainty 

at the beginning of a planning period. 

7. Stockout items as lost sales 

8. The lost sales cost is opportunity cost, where the 
amount is equal to profit of each type of product. 

9. Lost sales costs due to probabilistic demand and 

expired items are the same. 
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Notation 

 

The following is notation used: 

𝐷𝑖  : Total demand for item 𝑖 in one planning hori-

zon. (unit/year) 

𝑃𝑙𝑖  : Purchase price item 𝑖 per unit for each category 

lot 𝑙 ($/unit) 

𝑆𝑖  : Demand standard deviation item 𝑖 during 

planning horizon (Rp/unit/year) 

𝐻𝑖  : Holding cost items 𝑖 for one planning horizon 

($/unit/year) 

𝑐𝑢𝑖
  : Lost sales (stock out) cost for items 𝑖 (Rp/unit) 

𝐽𝑖  : Selling price per unit of items 𝑖 that will expire 

(Rp/unit) 

𝑛  : Numbers of item types (unitless) 

𝑇∗  : The optimal joint order (year) 

𝑄𝑖  : Order size optimal for item 𝑖 (unit) 

𝑄𝑘𝑖
  : Number expired items for item 𝑖 (unit) 

𝛼  : probabilities stock out (shortages) of supplies 

𝑍𝛼𝑖  : 𝑍 value for each item 𝑖 in normal distribution 

at level 𝛼 

𝑓𝑧𝛼𝑖
  : Ordinate function value for item 𝑖 based on 𝑍 

value  

𝜑𝑧𝛼𝑖
  : Partial expectations for item 𝑖 

𝑁𝑖  : Shortages number expected of each item 𝑖 
(unit) 

𝑁𝑇𝑖
  : Shortages number expected for item 𝑖 during 

one planning horizon (unit) 

𝑠𝑠𝑖  : Number of safety stock for item 𝑖 (unit) 

𝑡𝑖  : Short cycle planning period in one horizon 

planning (year)  

𝑡1𝑖
  : The length of keeping period for item 𝑖 until 

just before enters expiration date (year) 

𝑡2𝑖
  : The length of shortage period for item 𝑖 (year).  

𝜃𝑖  : Good condition fraction for item 𝑖 (0<𝜃𝑖<1) 

𝑈𝑙𝑖   : Quantities order requirement for item 𝑖 in an 

interval price break 𝑙 to get for all discount 

condition 

1 −
𝜃𝑖  

: Expired condition fraction for item 𝑖 (0<1 −
𝜃𝑖<1) 

𝐿  : Lead time order (year) 

𝑊  : Total warehouse capacities (unit of volume) 

𝑤𝑖  : Volume size for item 𝑖 (unit of volume) 

𝑂𝑏  : Total purchase cost for during one planning 

horizon (Rp) 

𝑂𝑝  : Total ordering cost for during one planning 

horizon (Rp)  

𝑂𝑠  : Total holding cost for during one planning 

horizon (Rp)  

𝑂𝑘  : Total lost sales (shortage) cost for during one 

planning horizon (Rp) 

𝑂𝑘𝑑  : Total expired cost for during one planning 

horizon (Rp)  

𝑂𝑇  : Total inventory cost for during one planning 

horizon (Rp) 

   

Model Formulation 

 

The inventory model in this study results from 

developing a probabilistic inventory model by consi-

dering expiration factor and purchase discount factors 

using all unit discounts [7] with the additional aspects 

from multi-item and limitations of warehouses capa-

cities [2]. Demand's nature is probabilistic is described 

by demand's average level for item 𝑖 is 𝐷𝑖 and the 

demand's standard deviation for item 𝑖 is 𝑆𝑖. The 

maximum inventory level for item i is 𝑄𝑖
∗. Where the 

length of time between orders (𝑇∗ =
𝐷1

𝑄1
∗ =

𝐷2

𝑄2
∗ =

𝐷𝑖

𝑄𝑖
∗) for 

all items 𝑖 is the same. This condition can occur 

because it is assumed that all items are ordered from 

the same supplier and at the same time. Therefore 

𝑄𝑖
∗ = 𝑇∗𝐷. 

 

Inventory shortage conditions in this inventory mode 

are caused by two factors: the first is due to expired 

goods; the second is due to the uncertainty of demand 

(demand's nature is probabilistic). Inventory shortage 

condition for each item 𝑖 occurs at time 𝑡2𝑖. Level 

inventory illustration in this research for one's cycle 

replacement is as Figure 1. 
 

By using the similarity approach, the equation of  

𝑡 is written as follow: 

𝑄𝑖 

𝑇∗ =
(𝑄𝑖−𝑄𝑘𝑖)

𝑡1𝑖
  

𝑡1𝑖 =
𝑇∗(𝑄𝑖−𝑄𝑘𝑖)

𝑄𝑖
  

whare 𝑄𝑘𝑖 = (1 − 𝜃)𝑖𝑄𝑖 and 𝜃𝑖 =
(𝑄𝑖−𝑄𝑘𝑖)

𝑄𝑖
, 

so 𝑡1𝑖 = 𝑇∗ 𝜃𝑖 

𝑇∗ = 𝑡1𝑖 + 𝑡2𝑖 , so 𝑡2𝑖 = (1 − 𝜃𝑖)𝑇∗ 

 

Because the expired condition fraction is known at the 

beginning of the planning period, so the average 

inventory shortage due to expired goods is expressed 

as equation 1 as follows; 

 
𝑄𝑘𝑖

2
=

𝑄𝑖
∗(1−𝜃𝑖)

2
=

𝑇∗𝐷𝑖(1−𝜃𝑖)

2
                    (1) 

 

Where condition expired occurs at time T1, then 

equation 1 becomes; 
 
𝑇∗2𝐷𝑖(1−𝜃𝑖^)2

2
                    (2) 

 

The level of average expired items for item 𝑖 in one 

planning horizon becomes; 
 

𝑇∗𝐷𝑖(1−𝜃𝑖^)2

2
                    (3) 

 

The expected value of inventory shortage due to 

demand's nature is probabilistic, showed by 𝐸[𝑁].  
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Figure 1. Illustration of inventory position in one cycle 

 
Demand's probability distribution and inventory 
shortage's probability distribution is assumed to be 
the normal distribution, so the equation for expecting 
shortages base on [3] is as follows 
 

𝐸[𝑁𝑖] = 𝑆𝑖√𝐿(𝑓𝑧𝛼 − 𝑍𝛼𝜑𝛼)                  (4) 
 
Total inventory shortage for one planning horizon 
caused of demand’s nature is as 
 
𝐸[𝑁𝑖]

𝑇∗ =
𝑆𝑖√𝐿(𝑓𝑧𝛼−𝑍𝛼𝜑𝛼)

𝑇∗                     (5) 

 
There are 5 components of total inventory cost in this 
research, namely purchase costs (𝑂𝑏), ordering costs 
(𝑂𝑝), holding (carrying) costs (𝑂𝑠), lost sales (shortage) 

costs (𝑂𝑘), and expiry costs (𝑂𝑘𝑑), which can be 
arranged in the following equation 
 
𝑂𝑇 =  𝑂𝑏 + 𝑂𝑝 + 𝑂𝑠 + 𝑂𝑘 + 𝑂𝑘𝑑                                             (6) 

 
In this study, the all-unit discount policy applies. 
Purchase price will be adjusted according to the order 
lot size. The purchase cost is multiplication of number 
of goods for each type purchased (𝑄𝑖) with prevailing 
price according to order lot size of each items (𝑃𝑙𝑖). The 
equation is expressed as 
 
𝑂𝑏 = ∑ 𝑃𝑙𝑖𝐷𝑖

𝑛
𝑖=1                    (7) 

 
Where 𝑃𝑙𝑖:  

𝑃𝑙𝑖 = {

𝑎0𝑖 , 𝑖𝑓 𝑈0𝑖 ≤ 𝑄 < 𝑈1𝑖

𝑎1𝑖 , 𝑖𝑓 𝑈1𝑖 ≤ 𝑄 < 𝑈2𝑖

⋮
𝑎𝑗𝑖, 𝑖𝑓 𝑈𝑗𝑖 ≤ 𝑄 < 𝑈(𝑗+1)𝑖

  

 
The joint order assumption means that all types of 
goods are ordered in one order ([6] and [18]). So, it is 
assumed that suppliers do not have limitations to 
fulfill the demand for each type of goods. Ordering cost 
for all items in one cycle period is 𝐴. Total ordering cost 

in one planning horizon is the multiplication of 
ordering cost per order and ordering frequency. 
However, it can also be calculated from ordering cost 
per order (𝐴) divided by the optimal joint order time 
(𝑇∗). The equation is expressed as  
 

𝑂𝑝 =
𝐴

𝑇∗                            (8) 

 
Holding cost per unit (𝐻𝑖) of each item is proportional 
to its price. Where 𝐻𝑖 is the multiplication of holding 
proportion cost per unit of items with price its item 
(𝑃𝑙𝑖). Holding cost in one cycle is multiplication from 
holding cost per unit per period, average item stored, 
and length of stored time (𝑡1𝑖

). Total holding cost for 

one planning horizon is holding cost per a cycle time 
multiplied by number of cycles, or by 1/𝑇∗. Hence 
holding cost equation can be written as follows 
 

𝑂𝑠 = ∑ (𝐻𝑖 ×
1

2
(𝑇∗𝐷𝑖 + 𝑇∗𝐷𝑖(1 − 𝜃𝑖) × 𝜃𝑖)

𝑛
𝑖=1 +  

          ∑ 𝐻𝑖𝑠𝑠𝑖
𝑛
𝑖=1    

𝑂𝑠 = ∑ (
𝐻𝑖𝜃𝑖(𝑇∗𝐷𝑖+𝑇∗𝐷𝑖(1−𝜃𝑖))

2
+ 𝐻𝑖𝑠𝑠𝑖)𝑛

𝑖=1   

𝑂𝑠 = ∑
𝐻𝑖(𝑇∗𝐷𝑖𝜃𝑖+𝑇∗𝐷𝑖𝜃𝑖(1−𝜃𝑖)+2𝑠𝑠𝑖)

2

𝑛
𝑖=1                   (9) 

 
Here, safety stock is estimated using the probability of 

shortage (𝛼). The safety stock 𝑠𝑠𝑖 = 𝑍𝛼𝑆√𝐿 is the 
estimated safety reserve for one planning horizon. The 
number of safety stocks will affect holding cost and 
reorder point but not affect the time's length between 
order cycles (T optimal). 
 
Total number of shortages is influenced by probabi-
listic demand factors and expiration factors. The total 
shortage (lost sales) cost is the multiplication of the 
shortage cost per item type (𝑐𝑢𝑖). Total level of inven-
tory shortage in one planning horizon is the sum of the 
average items expired and expected shortages 
(equation 3 and equation 5). Total cost of lost sales can 
be expressed as bellow 
    

𝑂𝑘 = ∑ (
𝑐𝑢𝑖𝐷𝑖(1−𝜃𝑖)2𝑇∗2

+2𝐸[𝑁𝑖]

2𝑇∗ )𝑛
𝑖=1                    (10) 

 

Shortage expectations are assumed to have a normal 
distribution with the shortage probability value set at 
the beginning of the planning period (equivalent to 1 
minus value of expected service level probability). 
Numbers of shortage expectations for one cycle reple-

nishment expressed as 𝐸(𝑁) = 𝑆√𝐿(𝑓𝑧𝛼
− 𝑍𝛼𝜓𝑍𝛼). 

Total number of shortages for one horizon planning 

expressed as 
𝐸(𝑁)

𝑇∗ .  

 

Inventory control that considers expiration factors can 
be found in general retail industry, food industry 
(manufacturing and restaurant), fast manufacturing 
consumer goods (FMCG), and chemical and phar-
maceutical industries. In this developed model, the 
items enter their expiration date at 𝑡2 (after passing 
through 𝑡1𝑖

). Assuming expired fraction is known, so 
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period 𝑡2 is also known. Level of expired item for one 
cycle replenishment express as 𝑄𝑘𝑖 = (1 − 𝜃𝑖)𝑄𝑖

∗ =
(1 − 𝜃𝑖)𝑇∗𝐷𝑖; and 𝑄𝑘𝑖 for one planning horizon become 
(1 − 𝜃𝑖)𝐷𝑖. All expired items can be sold to other 
parties with low price (𝐽𝑖), which is the price of an 
expired item less than the purchase cost. Hence the 
cost of one item expired is the gap between purchase 
cost and the price sold of an expired item. Total expiry 
cost is multiplication of number item 𝑖 was expired in 
one cycle, expiration cost (𝑃𝑖 − 𝐽𝑖) item 𝑖, and total 
cycles number in one planning horizon. 
 

𝑂𝑘𝑑 = ∑ 𝐷𝑖(1 − 𝜃𝑖) × (𝑃𝑖 − 𝐽𝑖)
𝑛
𝑖=1                               

 

Since the safety stock for one planning horizon also 
can be expired, the cost becomes 
 

𝑂𝑘𝑑 = ∑ (𝐷𝑖 + 𝑠𝑠𝑖)(1 − 𝜃𝑖) × (𝑃𝑖 − 𝐽𝑖)𝑛
𝑖=1                  (11) 

 
Total inventory cost in one planning horizon is 
expressed as 
 

𝑂𝑇 = ∑ 𝑃𝑙𝑖𝐷𝑖
𝑛
𝑖=1 +

𝐴

𝑇∗ +             

∑ (
𝐻𝑖(𝑇∗𝐷𝑖𝜃𝑖+𝑇∗𝐷𝑖𝜃𝑖(1−𝜃𝑖)+2𝑠𝑠𝑖)

2
)𝑛

𝑖=1 +  

∑ (
𝑐𝑢𝑖(𝐷𝑖(1−𝜃𝑖)2𝑇∗2

+2𝐸(𝑁𝑖)

2𝑇∗ )𝑛
𝑖=1 +  

∑ (𝐷𝑖 + 𝑠𝑠𝑖)(1 − 𝜃𝑖) × (𝑃𝑖 − 𝐽𝑖)𝑛
𝑖=1                          (12) 

 
Warehouse capacity constraint is expressed as 
inequality function, is as follow 
 

∑ 𝑤𝑖𝑄𝑖 ≤ 𝑊𝑛
𝑖=1                        (13) 

 
Because decision variable of model is as 𝑇∗, equation 
(13) can be expressed as 
 

𝑔(𝑇) = ∑ 𝑤𝑖𝐷𝑖𝑇𝑚𝑎𝑥 ≤ 𝑊𝑛
𝑖=1                              (14) 

 
The Karush-Kuhn-Tucker Conditions for this non-
linear programming is as follow 
 

𝑀𝑖𝑛 𝑂𝑇(𝑇𝑚𝑎𝑥) 
s/t 𝑔(𝑇𝑚𝑎𝑥) ≤ 𝑊                (15) 
 

Hence 

𝑇𝑚𝑎𝑥 =
𝑊

∑ 𝑤𝑖𝐷𝑖
𝑛
𝑖=1

                                   (16) 

 

𝑇𝑜𝑝𝑡 < √
2(𝐴+∑ 𝑐𝑢𝑖𝐸[𝑁]𝑖

𝑛
𝑖=1 )

∑
(𝐻𝑖𝐷𝑖𝜃𝑖(2−𝜃𝑖)+𝑐𝑢𝑖𝐷𝑖(1−𝜃𝑖)

2
)

2
𝑛
𝑖=1

                                        (17) 

 

𝑇𝑜𝑝𝑡 in equation (17) is also the optimal solution for 
𝜕𝑂𝑇

𝜕𝑇
= 0, the first derivative of equation (12). Further-

more, 𝑇𝑜𝑝𝑡 is called time between joint orders. The 

optimal solution for minimizing total costs inventory 

with warehouse capacity constraints is 𝑇∗. According 

to the first theorem of Karush-Kuhn-Tucker 

Conditions, the value of 𝑇∗ is 𝑇𝑜𝑝𝑡 if 𝑇𝑜𝑝𝑡 < 𝑇𝑚𝑎𝑥, and 

it is 𝑇𝑚𝑎𝑥 if  𝑇𝑜𝑝𝑡 > 𝑇𝑚𝑎𝑥 (this condition occurs when 

𝑔(𝑇𝑚𝑎𝑥) − 𝑊 > 0,  so this inequity must be trans-
formed to be an equation 𝑔(𝑇𝑚𝑎) − 𝑊 = 0, 𝜆 > 0). 

Due to the consideration of all unit discount and multi 
product aspect, the algorithm for determining the 
inventory policy (time between orders and total 
inventory cost) in this study is as follows: 
Calculate 𝑇𝑚𝑎𝑥  value using equation (16). 
Calculate 𝑇𝑜𝑝𝑡 using equation (17). 

If     𝑇𝑚𝑎𝑥 ≥ 𝑇𝑜𝑝𝑡, the solution of the inventory policy is 

𝑇𝑜𝑝𝑡 (𝑇
∗ = 𝑇𝑜𝑝𝑡), otherwise the solution is 𝑇𝑚𝑎𝑥(𝑇∗ =

𝑇𝑚𝑎𝑥). 
Determine price (𝑃𝑙𝑖) base on 𝑇∗ value (point 3): convert 𝑇∗ 

value to order lot size 𝑄𝑖
∗ (𝑄𝑖

∗ = 𝑇∗𝐷𝑖), and order lot size will 

determine the pricing policy (if 𝑄𝑖
∗is in the range of price break 

𝑙 then use the price 𝑝𝑙𝑖). 

Calculate total inventory cost using equation (12). 

 

Results and Discussions 
 
Data and Calculation 
 

Numerical data set used for model testing was taken 
from Limanjaya and Silitonga [7] with an additional 
expiration factor. The data can be seen in Table 1 and 
Table 2. 
 

Based on the input data from Table 1 and Table 2, it 
is obtained that 𝑇𝑜𝑝𝑡 > 𝑇𝑚𝑎𝑥. If 𝑇𝑜𝑝𝑡 > 𝑇𝑚𝑎𝑥 interpret 

then the objective function solution, which minimized 
the total inventory cost (first derivative from total cost 
function), is hindered by the warehouse capacity 
constraint. Hence, the solution of time between orders 
is the value of 𝑇𝑚𝑎𝑥(0,1429 years = 52.2 days, 365 days 
in a year) see Table 3. 
 

Total cost of using 𝑇𝑚𝑎𝑥 value is indeed smaller than 
total cost using 𝑇𝑜𝑝𝑡 value. To achieve optimal costs, 

warehouse capacity constraints must be relaxed. 
Initial warehouse capacity is 500 units of volume, and 
it must be relaxed to 1516,75 units of volume if we 
want to get the optimal cost. 
 

Analysis 
 

Comparative analysis was performed on the following 

inventory models: 
1.  

2. Limanjaya and Silitonga's model is the first model [7]: 

a multi-item probabilistic inventory model that con-

siders expiration factors and purchase bonuses. To 

make a more representative comparison, the pur-

chase bonus policy was replaced with all unit dis-

counts policy.  
 

The second model is Koswara and Lesmono's model 

[2]: a multi-item probabilistic inventory model, with 

all unit discount policy and warehouse capacity cons 

traints. Demand during the lead time using gamma 

distribution was replaced with normal distribution to 

be more representative to be compared with this 

study. It should be noted that there is no expired cost 

in this model. 
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Table 3. Result. 

 Value of T 

𝑇𝑚𝑎𝑥 𝑇𝑜𝑝𝑡 

Time between order 0,1429 𝑦𝑒𝑎𝑟 0,43336 𝑦𝑒𝑎𝑟 
Total Cost Inventory $ 19.371,31 $ 16.938,63 

 

This study's third inventory model is a multi-item 

probabilistic inventory model that considers expira-

tion factors, all unit discount policies, and warehouse 

capacity constraints. 
 
All three models were tested using the same data set 
with their respective adjustments. The output of the 
three models can be seen in Table 4. The 𝑇∗-value 
from multi-item probabilistic inventory model by 
considering perishable and purchase bonus factors [7] 
is greater than the other two, whereas the multi-item 
probabilistic inventory model by considering all unit 
discount and limited warehouse capacity [2] and the 
model in this study have the same value. Basically, 
the 𝑇𝑜𝑝𝑡 value from model [2] and this study is almost 

the same as T value from model [7], but due to the 
limited warehouse capacity, the 𝑇∗ optimal value used 
the 𝑇𝑚𝑎𝑥value from the equation (16). Model [7] 
provides lower total cost than the other two. This 
condition occurred because of the order lot size from 
the model [7] has the advantage of discounted price 
due to the absence of capacity constraint. Meanwhile, 
the models [2] and this research were not. Total 
inventory cost in this study is greater than the total 
cost of model [2], even though both models have the 
same decision variables (T* value, order lot size and 
order frequency). This is due to the expiration factor 
in the study. 
 

The output from the numerical test is closeout mores 

complex of inventory models (consider many factors or 

element systems), the higher the total inventory cost 

will be. Besides that, optimal solutions are getting 

harder to achieve.  
 

Sensitivity analysis has been conducted to determine 

the sensitivity of 𝑇𝑚𝑎𝑥, 𝑇𝑜𝑝𝑡, 𝑄𝑘 and total costs to the 

changes of warehouse capacity, good goods fraction, 

discount factors, and holding cost. The effect from 

changing parameter values can be seen in Figure 2 up 

to Figure 5. 
 

The value of 𝑇𝑚𝑎𝑥is sensitive to the warehouse 

capacity, good goods fraction, and holding cost. 

Increasing the capacity of warehouse will increase 

𝑇𝑚𝑎𝑥 value so that the order lot size becomes larger, 

and the number of ordering frequencies decreases. 

The bigger the order lot size, the bigger the discount 

will be. However, it will increase the total holding cost 

and the number of expired items. In this case, there is 

a trade-off between total purchase cost and total 

ordering cost against total holding costs and expira-

tion costs. Total cost is sensitive to the good goods 

fraction, but the𝑇𝑚𝑎𝑥 value is not. The higher the 

fraction of good goods, will make the number of 

expired goods fewer, thus reducing total expired cost 

and total shortages (lost sale) cost. The value of 𝑇𝑚𝑎𝑥 

is not sensitive to the discount factor value, due to the 

capacity constraints, because the discount factor will 

only give effect to the  𝑇𝑚𝑎𝑥 value if the value of 

capacity limitation is high enough. 
 

The parameters of good goods fraction and holding 
cost are sensitive to change the total cost thru the 
value of 𝑇𝑜𝑝𝑡. The total cost is also sensitive to the 

discount factor. The effect of the changes in good goods 
fraction to the total cost is the same, whether using 
𝑇𝑜𝑝𝑡 value or 𝑇𝑚𝑎𝑥 value. However, 𝑇𝑜𝑝𝑡 is sensitive to  

the changes of good goods fraction parameter. A 
decrease in good goods fraction will decrease 𝑇𝑜𝑝𝑡 as 

Table 1. Data of product (numerical set data) 

Description  Item 1 Item 2 Item 3 

Total demand expectation 𝐷𝑖 (unit/year) 550 400 800 

Volume size 𝑤𝑖 (unit of volume) 2 2 2 
Demand standard deviation 𝑆𝑖 (unit/year) 57.75 42 72 
Lead time 𝐿𝑖 (year)  0.0083102 0.0083102 0.0083102 

Shortage expectation value 𝑁𝑖  0.3596 0.3046 0.6028 
Fraction good condition 𝜃𝑖  0.90 0,90 0.90 
𝛼𝑖 Value 5% 6% 7% 
Z- Value  1.65 1.55 1.45 
𝑓𝑧𝛼

Value 0.1023 0.12 0.1394 

𝜑𝑧𝛼
 Value 0.0206 0.0261 0.0328 

 
Table 2. Data of cost components (numerical set data) 

Cost description Item 1 Item 2 Item 3 

Price component ($/unit) 
𝑄 < 201 12 𝑄 < 131 15 𝑄 < 301 8 
𝑄 ≥ 201 10,5 𝑄 ≥ 131 13 𝑄 ≥ 301 7 

Join order cost 𝐴 ($) 9 
Holding cost per unit per period 𝐻𝑖 ($/year) 0.12 0.225 0.08 
Shortage cost 𝑐𝑢𝑖 ($/unit) 3 4 2 
expired item price ($/unit) 10.2 12.75 6.8 
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much as the percentage decrease in value of good 
goods fraction. Meanwhile, an increase in value of 
good goods fraction will increase 𝑇𝑜𝑝𝑡 value to a certain 

extent. The 𝑇𝑜𝑝𝑡 is no longer sensitive to the changes 

in value of good goods fraction when the percentage 
change approaches 1. The lower holding cost, the 
higher 𝑇𝑜𝑝𝑡 value, as the order lot size increases and 

ordering frequency decreases, vice versa. A 10% 
increase in holding cost will decrease 𝑇𝑜𝑝𝑡 value by 3-

5%. Hence, 𝑇𝑜𝑝𝑡 is not sensitive to the changes in 

parameter value of warehouse capacity 
 
The number of expired goods is sensitive to the value 
changes of good goods fraction parameter, either 
based on 𝑇𝑚𝑎𝑥 value or 𝑇𝑜𝑝𝑡 value. The higher good 

goods fraction, the smaller the number of expired 
goods. The number of expired goods using 𝑇𝑜𝑝𝑡 value 

is greater than using 𝑇𝑚𝑎𝑥 value. The number of 
expired goods becomes insensitive when increasing 
the percentage changes in good goods fraction, greater 
than 20%. The number of expired goods using 𝑇𝑚𝑎𝑥 
value is sensitive to the changes of warehouse 
capacity, but not sensitive if using 𝑇𝑜𝑝𝑡.  An increase 

in warehouse capacity by 20% will increase 20-22% of 
the number of expired items, and vice versa. The 
number of expired items using 𝑇𝑜𝑝𝑡 value is sensitive 

to the changes in parameter value of holding cost, but 
not sensitive if using 𝑇𝑚𝑎𝑥 value. An increase in 
holding cost by 20% will decrease the number of 
expired items by 7-10%, and vice versa. The number 
of expired goods is not sensitive to the changes in 
discount factor, either based on 𝑇𝑚𝑎𝑥 value or 𝑇𝑜𝑝𝑡 

value. 
 
For companies with deteriorating product characte-
ristics, the developed model in this study is suitable. 
Efforts to reduce the total cost of an inventory system 
that has the same characteristics as this study can be 
made in several ways, including: 
 
Minimizing the holding cost (carrying cost) per item. 
This can be done by managing inventory management 
properly so that the elements forming holding cost per 
item can be reduced. These elements can be in the 
form of labor, utilities (use of water and electricity), 
material handling, racking/shelving management, 
maintenance, and quality control. 
 
In the existing condition, the good goods fraction 
cannot be controlled. However, the company can 
manage the purchasing process so that it obtains 
goods that still have a long expiration date. In 
addition, companies can manage inventory flow with 
the FEFO (First Expired First Out) system. Mini-
mizing the number of expired items will also reduce 
the overall total cost.  
 
Efforts to reduce total inventory cost can also be made 
by relaxing inventory system constraints. Factors that 
become inventory system constraints can come from 

financial capacity and resource availability, one of 
which is storage capacity. Relaxing the capacity cons-
traints will increase order lot size. Thus, companies 
can take advantage of economies of scale of ordering 
and the opportunity to get discounted prices. The lar-
ger the order lot size, the less likely there is a shortage 
of inventory, but it will increase the expiration date 
and total cost of holding. This trade-off needs to be 
adequately considered by the company. 
 

 
Figure 2. Total cost sensitivity analysis using 𝑇𝑚𝑎𝑥  

 

 
Figure 3. Total cost sensitivity analysis using 𝑇𝑜𝑝𝑡  

 

 
Figure 4. 𝑇𝑚𝑎𝑥 sensitivity analysis 

 

 
Figure 5. 𝑇𝑜𝑝𝑡 sensitivity analysis 
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Conclusion 
 

In this study, a multi-item probabilistic inventory 

model that considers expiration factors, all unit 

discount policy, and warehouse capacity constraints 

have been developed. This inventory model can be 

applied to industries with expired product charac-

teristics (gradually deteriorating over time). Every 

company with limited resources needs to pay 

attention when managing an inventory system. This 

study takes the limiting factor of storage capacity in 

modeling the inventory. 

 

By looking at the results of comparative model 

analysis, it can be concluded that an inventory model 

that considers more factors will have a greater total 

inventory cost than the one that considers fewer. The 

results from sensitivity analysis concluded that 𝑇𝑚𝑎𝑥 

value is very sensitive to warehouse capacity limita-

tion parameter, while 𝑇𝑜𝑝𝑡 value is very sensitive to 

the good goods fraction and holding cost. The trade-off 

between order lot size against capacity and holding 

cost is the most critical factor in determining the 

inventory policy. 

 

Future studies can consider different expiration 

factors for each type of goods, i.e., the expiration period 

for each product is different from each other. Future 

studies can also consider expanding the warehouse 

capacity by considering the availability of funds. In 

actual conditions, storage capacity can generally be 

relaxed, but this relaxation ability is very dependent 

on financial constraints. 
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