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Abstract: The unrelated parallel machine scheduling (PMS) problem is essential for the manufacturing 

industry. Scheduling will save company resources, especially time management. By solving scheduling 

problems quickly and precisely, the company can get more profit. On that note, this paper focused on 

unrelated PMS problems, which did not consider the inherent uncertainty in processing time and set up 

time by minimizing the makespan and tardiness. This paper aimed to minimize the makespan and 

tardiness using timing considerations. This paper described how to schedule unrelated parallel machines 

using the Ant Colony Optimization (ACO) Algorithm approach. The ACO is beneficial for inherent 

parallelism problems and can provide fast and reasonable solutions. This study revealed that the results 

of ACO Algorithm scheduling were obtained under a steady condition in iteration 30467. This condition 

can be interpreted that the makespan and tardiness value is close to 2.75%. By minimizing the makespan 

and tardiness, the delay of product delivery to consumers can be anticipated. Moreover, a company can 

maintain customer satisfaction and increase its profit. 

 

Keywords: Ant Colony Optimization (ACO)  Algorithm, makespan, tardiness, parallel machine 

scheduling (PMS). 
  

 

Introduction 
 

Economic growth has been skyrocketing as more 

countries are open to global trade. Nations race to 

innovate and develop their respective industries to 

compete for market domination. Indonesia joins the 

bandwagon and continuously improves its capabi-

lities in the manufacturing industry and develop-

ment. Many companies adopt a production optimi-

zation approach. There are important aspects to 

optimize production. Production scheduling is one of 

the most important aspects to seize market oppor-

tunities with the shortest production cycle and maxi-

mum profit [1]. Besides, production scheduling is the 

decision-making process associated with allocating 

resources to tasks on machines to optimize one or 

more scheduling purposes [2]. Scheduling problems 

have an important role in recent years due to the 

increased consumer demand for variety, reduced 

product life cycle, market changes with global compe-

tition, and rapid development of new technologies [3]. 

Production scheduling also has a vital role in 

supporting company activities. Scheduling functions 

to support continuous and smooth production in 

filling up market needs. Parallel machine scheduling 

(PMS) is a problem related to allocating a set of jobs 

to several machines to fulfill demands. PMS can 

generally be classified into identical, uniform, and 

unrelated parallel machine scheduling problems [4]. 
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Scheduling unrelated parallel machines is a gene-

ralization of two other categories of which different 

machines perform similar functions but have diffe-

rent processing capabilities or capacities. In real life, 

the scheduling of unrelated parallel machines is a 

challenge for researchers and practitioners because 

the problem of NP-hard can minimize the makespan 

time for several jobs in unrelated parallel machines 

[5]. Several studies present the problem of unrelated 

PMS, which involves the makespan considerations 

[6,7,8,9]. The novelty of this paper focuses on the 

problem of scheduling the parallel machines that are 

not related by considering the inherent uncertainty in 

processing and setting uptime. The practical 

implication of this paper is how to minimize the 

makespan by scheduling the appropriate number of 

jobs and machines. On the other hand, another 

benefit is that a company can perform other work 

with a lower makespan to make it more profits. This 

research road map is presented in Table 1. 

 
PT. Asia Plastic is a company engaging in plastic 
packagings, such as plastic bags, plastic bottle caps, 
and other plastic materials. The company uses 
injection molding and blow molding machines and 
several machines using power jet technology in 
producing plastic packaging. The use of machines 
with new technology and modern equipment will 
support the production process. The company's 
operation is based on the Make to Order concept 
(products manufactured based on customer orders). 

Consequently, the company's production is highly 

dependent on the demand from other companies. 

Moreover, the company's productions and engine 

needs are not fixed. One of the frequent obstacles is 

unpredictable (non-deterministic) work, making the  
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planned production schedule needs to be changed. 

These constraints also lead to a longer completion 

time. So far, the companies' scheduling tends to apply 

the First Come First Out (FCFO) and Earliest Due 

Date (EDD) rules. These types of scheduling are 

deemed ineffective because the length of order fulfill-

ment time often results in late order fulfillment, 

frequently idle machines, and frequently sudden 

schedule changes that can disrupt the company's 

smooth production activities. The company typically 

purchases raw material and starts the production 

planning process only when a client's order is con-

firmed. Because the company does not make forecasts 

and initial preparation, the number of orders is 

beyond capacity. Consequently, many production 

processes are exceeding the due date. The researchers 

were encouraged to investigate scheduling unrelated 

parallel machines to time processing and time 

management based on the previous discussion. This 

study aimed to plan order-based production sche-

duling in the production process and to facilitate 

completion. The researchers employed the Ant 

Colony Optimization (ACO) Algorithm to solve 

parallel machine scheduling problems. In some cases, 

different ACOs, such as single machine scheduling 

[10,11,12,13], flow shop scheduling [14,15,16,17, 

18,19], and parallel machine scheduling identical 

[20,21] could provide best results. ACO Algorithm 

was used to plan the production schedule according to 

the standard time required by the machine of each 

order type. This scheduling was implemented to get 

the best implementation time. Client orders were 

adjusted by the machine types and the production 

target's required numbers. 

 

Methods 
 

Scheduling is necessary to reduce the allocation of 

operator power, machinery, and production equip-

ment and make other aspects more efficient. Sche-

duling is pivotal to make decisions in a sustainable 

production process. The scheduling problem refers to 

allocating work to the machine with limited capacity 

Table 1. Research position 

No Scheduling types Previous 

research 

Purposes Methods 

1 Single machine 

 

Gagné et al. [10] 

 

To minimize total tardiness GA, Simulated Annealing (SA), 

and Branch and Bound 

Song et al. [1] 

 

To minimize the makespan by 

employing SMS problem with 

sequence-dependent setup 

time 

EDD, SDST, and ACO 

Jia et al. [12] To minimize the makespan 

and the total rejection cost on 

BPMs 

ACO, LACO, and PACO 

Li et al. [13] To minimize the makespan  Weighted Shortest Processing 

Time (WSPT) and ACO 

2 Flow shop Huang and Yu 

[14] 

 To create computational time 

and stability 

ACO  

Qin et al. [15]  

 

To reduce the rescheduling 

frequency 

Rolling Horizon Procedure 

(RHP) and ACO  

3 Job shop 

 

Huang et al. [16] To minimize the makespan ACO and PSO 

Khan et al. [17] To minimize the makespan  ACO  

El Khoukhi et al. 

[18] 

To minimize the makespan Dual-Ants Colony (DAC)  

Wang et al. [19] to optimize the makespan for 

FJSP 

Improved Ant Colony 

Optimization (IACO) 

4  Identical parallel 

machine 

scheduling  

Tavares Neto et 

al. [20] 

To minimize the sum of 

outsources and delay costs 

ACO 

Öztürkoğlu, [21] To increasing processing times 

of jobs 

ACO and SA 

5 Unrelated parallel 

machine 

Arnaout, et al. 

[22]  

 

To minimize the makespan Two-stage Ant Colony 

Optimization (ACO) and TS 

Jia et al. [23] To minimize the makespan A Fuzzy Ant Colony 

Optimization (FACO)  

6 Unrelated parallel 

machine 

Current 

(Pulansari and 

Triyono, 2021) 

To minimize the makespan 

and tardiness 

ACO, First Come First Out 

(FCFO) rules, and Earliest Due 

Date (EDD) rules. 

 



Pulansari et al. / The Unrelated Parallel Machine Scheduling with a Dependent Time Setup / JTI, Vol. 23, No. 1, June 2021, pp. 65-74 

 

 

67 

 

and amount on that condition. In general, scheduling 

problems can be explained as n jobs (J1, J2, …, Jn) to 

process on m machines (M1, M2, ..., Mn). The time 

needed to process J1 work on machine M is P. Each 

job must be processed without quitting during the 

processing time. The machine can only handle one job 

at the same time and is always available from zero 

time. Pinedo [2] classifies parallel scheduling into: 

single-engine scheduling and parallel scheduling of 

parallel machines.  

 

Problem Formulation 

  

In the case of PMS, a set of independent jobs must be 

scheduled on the machine without preemption. In 

this paper, the problem situation referred to each job 

with a processing time, release date, and due date. 

This paper also considered the order-dependent setup 

time related to the setup time when the machine 

switched production from one job to another. Without 

eliminating the general nature, this research 

employed mathematical modeling according to the 

ACO algorithm parameter. The difference between 

this study and Guniet [22] lay in the machines’ 

performance, creating different processing times, 

release dates, and due dates. The goal of the previous 

studies was only a shorter total of work completion. 

 

We assumed that if the work was scheduled on the 

machine, no adjustment time was required. However, 

there were some restrictions and assumptions. 

1. During the process, there was no stoppage. 

2. The machine was ready to operate and produce. 

3. There were no damage and repair to the engine. 

4. Each machine could only do one job at a time. 

5. Each job could only be processed once. 

 

Some notations are defined below. 
𝑛 : Number of jobs to process 
𝑚 : Number of machines 
𝑖 : Index of jobs 
𝑘 : Index of machines 

𝐶𝑚𝑎𝑥 : The maximum completion time of jobs, 

i.e., the makespan 
𝐶𝑖 : The completion time of job 𝑖 
𝑃𝑖𝑘 : The processing time of job 𝑖 on machine 

𝑘 

𝑆𝑇𝑖𝑗𝑘 : The setup times of processing job 𝑗 
right after job 𝑖 on machine 𝑘  

𝑆𝑇𝑜𝑗𝑘 : The setup times of processing job 𝑗 first 

on machine 𝑘 

𝑋𝑖𝑗𝑘 : A binary variable equal to 1 if job 𝑗 is 

processed right after job 𝑖 on machine 

k, 0 otherwise 

𝑋𝑜𝑗𝑘 : A binary variable equal to 1 if job 𝑗 is 

processed at the first time on machine 

𝑘, 0 otherwise 

𝑋𝑗𝑜𝑘 : A binary variable equal to 1 if job 𝑗 is 

processed at the last time on machine 

𝑘, 0 otherwise 

𝑉 : A very large constant 

  

Based on the previous assumptions and notations 

mentioned, the problem in questions can be 

formulated as follows (see [24, 25]): 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝐶𝑚𝑎𝑥                                                                        (1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑇𝑚𝑎𝑥                 (2) 

      (3) 

Subject to: 

𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 ∑ 𝐶𝑖,𝑗
𝑘
𝑖=1                  (4) 

∑ ∑ 𝑋𝑖,𝑗,𝑘 = 1, ∀𝑗 = 1,2, … , 𝑛,𝑚
𝑘=1

𝑛
𝑖=0
𝑖≠𝑗

                            (5) 

∑ 𝑋𝑖,ℎ,𝑘 − ∑ 𝑋ℎ,𝑗,𝑘 = 0, ∀ℎ = 1,2, … , 𝑛;𝑛
𝑗=0
𝑗≠ℎ

  ∀𝑘 =𝑛
𝑖=0
𝑖≠ℎ

1,2, … , 𝑚,                                (6) 

𝐶𝑗 ≥ 𝐶𝑖 + ∑ 𝑋𝑖,𝑗,𝑘(𝑆𝑇𝑖,𝑗,𝑘+𝑃𝑗,𝑘) + 𝑉(∑ 𝑋𝑖,𝑗,𝑘 −𝑚
𝑘=1

𝑚
𝑘=1

1), ∀𝑖 = 0,1, … , 𝑛, ; ∀𝑗 = 1,2, … , 𝑛,               (7) 

∑ 𝑋0,𝑗,𝑘 = 0, ∀𝑘 = 1,2, … , 𝑚,𝑛
𝑗=0                               (8) 

𝑋𝑖,𝑗,𝑘 ∈ {0,1}, ∀𝑖, 𝑗 = 0,1, … , 𝑛; ∀𝑘 = 1,2, … , 𝑚,            (9) 

𝐶0 = 0,                 (10) 

𝐶𝑗 ≥ 0, ∀𝑗 = 1, … , 𝑛.               (11) 

 

Equations (1), (2), (3) and (4) are objective functions. 

Equation (5) ensures that each job must be processed 

only once. Equation (6) implies that each work has a 

predecessor and successor. Note that, J0 job is used to 

present the first job on the machine. Equation (7) 

ensures that the processing of a job must begin after 

the completion of its predecessor. Equation (8) 

ensures that each machine only has one job during 

the process. Equation (9) defines binary variables. 

Equation (10) implies that the completion time for a 

job is zero. Equation (11) ensures that the completion 

time of regular work is not negative. 

 

Scheduling-Based Ant Colony Optimization  

  

Marco Dorigo first introduced the ant colony 

algorithm. It is a probability technique for solving 

computational problems by finding the best path 

through graphs. The behavior of ants inspired this 

algorithm in finding pathways from their colonies 

from looking for food. 

 

In the real world, ants travel around randomly. When 

finding food, they return to their colonies while giving 

signals with pheromone traces. If other ants find the 

path, they will not travel randomly anymore but will 

follow the trail, return and strengthen the pheromone 

if they have found food in the end. 

 

When an ant leaves its nest, it begins to schedule 

production orders until it finds food (which means 

that the required work has been scheduled). Ants’ 
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order scheduling means that the given node is 

selected and put on the path to food. 

 

An ant randomly chooses the next operation (or the 

next node to go) based on the processing time of the 

operation and on the number of pheromones available 

at the edge to connect the node of the ant’s current 

position and other possible nodes. The more 

pheromones in the bow (tip) are the more likely the 

ant will choose it. 

 

An ant’s scheduling of all possible operations indi-

cates that it has reached a food source, and one trip is 

completed. The solution found by each ant is analyzed 

and depends on the quality of the responses. Each ant 

pathway created will get a certain amount of 

pheromone according to the quality criteria previous-

ly set (the better the schedule is, the more pheromo-

nes will be stored in each arch on the track). 

 

Since the probability of selecting a node also depends 

on the number of pheromones in the arc, better 

solutions tend to influence other ants to choose the 

same path in the future. When all ants complete the 

required number of trips, the scheduling process ends, 

and the best responses are presented [26]. Dorigo et 

al., [27] revealed the ant algorithm steps, which were 

then adjusted to the parallel machine production 

scheduling application. These steps are presented as 

follows. 

 

1. Initializing  the parameters of algorithms 

 

In the ant algorithm, several parameters entered as 

an initial initialization to perform the optimization 

process.  Some of these parameters are: 
𝒏 : jobs 
𝝉 : Pheromone constant 

𝜶 : The controlling constant of the ant trail 

intensity 
𝜷 : The visibility controller constant 
𝒌 : ants 

𝒎 : machines 
𝝋 : Pheromone trail evaporation 
𝒕 : Index of iterations 

 

2. The visitor route arrangement of each ant to each 

node. 

 

3.Calculation of changes in the price of ant footprint 

intensity between nodes. 

 

𝑃𝑖𝑗
𝑘 (𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼

.[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑘(𝑡)]𝛼.[𝜂𝑖𝑘]𝛽 
𝑘 𝜖 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

    if 𝑗 𝜖 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0                                                        s for others
       (12) 

where,  

𝜏𝑖𝑗  = Pheromone intensity on the path between node 

(job) 𝑖 and node (job) 𝑗 

𝑃𝑖𝑗
𝑘   = Probability of path from a node (job) 𝑖 to node 

(job) 𝑗 by  machine k 

 

4.  Job sequence search with the optimal makespan 

and total tardiness  

The objective function can be calculated using eq:  

Minimize: 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐶𝑖)             (13) 

where 𝐶𝑖 is completion time job on machine 𝑖. 
Minimize: 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑇𝑖,𝑗)              (14) 

where 𝑇𝑖𝑗 = 𝐶𝑖 − 𝑑𝑖  is the tardiness time job on 

machine 𝑖, the di is the due date of 𝑗 job. 

 

5.  Calculation of the price of ant footprint intensity of 

nodes in the next cycle 

Update local pheromone 

𝜏𝑖𝑗 (1 − 𝜑). 𝜏𝑖𝑗 + 𝜑. 𝜏0               (15) 

where, 

𝜏0: Initial pheromone value 

  

Update global pheromone 

𝜏𝑖𝑗(𝑡 + 𝑛) = 𝜑𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗                             (16) 

∆𝜏𝑖𝑗 = ∑ ∆𝜏𝑖𝑗
𝑘𝑚

𝑘=1                 (17) 

where, 

∆𝜏𝑖𝑗
𝑘  : The quantity per unit length of the pheromone 

trace substance left on the arch (i,j) by ant-k at 

the time interval between t and t+n  

The pheromone quantity is formulated by: 

∆𝜏𝑖𝑗
𝑘 = {

𝑄

𝐿𝑘
    if ant 𝑘 use an arch (𝑖, 𝑗)     

0      for others                                
             (18) 

where, 

𝑄   :  A constant  

𝐿𝑘  : Tour length produced by ants 𝑘  

 

The coefficient 𝜌 must be less than 1 to prevent the 

accumulation of unlimited pheromone traces. In his 

experiments, Marco Dorigo uses 𝜏𝑖𝑗 (0) = c (where 𝑐 is 

a small positive constant number). The intensity of 

the trace at time 0 is set equal to that of a small 

positive number. 

6.  If the stop is fulfilled (convergent conditions on the 

route is produced by the previous route) or the 

max number of iterations has been completed, 

take the job/operation sequence with the smallest 

makespan and tardiness; if not, return to step two. 

If iteration > maximum iteration, go to step seven. 

7. Terminating the ACO algorithm. 

 

Results and Discussions 
 

This paper employed the ACO algorithm because it is 

exact and can quickly resolve unrelated parallel 

problems. Here is a set of instances for the numerical 

experiments. For preliminary investigation, the 

researcher compared the ACO with other methods to  
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Table 2. Processing time  

Job 
Processing 

Time 

Due 

Date 

1 50 150 

2 20 66 

3 13 39 

4 64 192 

5 43 129 

6 70 110 

7 53 159 

8 55 165 

9 95 185 

10 83 149 

11 54 162 

12 56 168 

13 60 180 

14 77 131 

15 28 84 

16 24 72 

17 25 75 

 
Table 3. Results comparison of five heuristics algorithms 

Comparison of average  makespan and tardiness 

experiment results (hours) 

 GA PSO SA ACO TS 

Running 

time 
0.244 0.298 0.136 6.7 0.52 

Makespan 202.8 202.1 209.9 184.1 207.3 

Tardiness 15.3 16.8 58.6 12.4 35.7 

 
investigate its effectiveness and efficiency. The 
compared methods are the Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), Simulated An-
nealing (SA), ant Colony optimization (ACO) algo-
rithm, and tabu search (TS). The data of processing 
time is presented in Table 2. Comparing between the 
five methods (Table 3) showed that the ACO Algo-
rithm has the smallest makespan and tardiness. We 
compare five heuristics methods to test whether ACO 
can produce the smallest makespan and tardiness 
(Tables 4 and 5). We use three parameters, i.e., 
number of jobs, processing time, and due date. 
Moreover, we test the setting ten times. 
 

Data were collected through three techniques. First, 

the observation technique was conducted to collect 

data by directing observation on the studied object. 

Second, the interview technique focused on the 

employees by holding a question and answer about 

the object to help or provide an explanation about the 

research problem. Third, documentation was 

conducted by recording and reviewing the company’s 

documents related to the research object. 

 

In this research, the production process began on 19 

July 2019. First, the raw materials were collected 

from the warehouse; then, they were taken to the 

mixer machine to mix with dyes if color specifications 

had been on demand. If no color specifications had 

been required, the raw materials were sent directly to 

the molding machine. The prepared raw materials  

Table 4. Makespan produces by five heuristic algorithms 

No GA PSO SA ACO TS 

1 216 201 215 182 242 

2 209 211 215 183 187 

3 209 194 231 187 187 

4 206 218 207 181 215 

5 206 198 198 178 214 

6 206 192 236 188 214 

7 194 197 195 186 187 

8 194 192 223 183 215 

9 194 215 186 186 219 

10 194 203 193 187 193 

Average 202.8 202.1 209.9 184.1 207.3 

 
Table 5. Tardiness produces by five heuristic algorithms 

No GA PSO SA ACO TS 

1 120 53 84 51 129 

2 11 0 47 0 8 

3 11 98 82 56 3 

4 11 0 42 0 47 

5 0 0 18 0 37 

6 0 0 105 3 37 

7 0 17 27 6 10 

8 0 0 92 0 39 

9 0 0 6 6 39 

10 0 0 83 2 8 

Average 15.3 16.8 58.6 12.4 35.7 

 

had been put in the machine, and the production 

process started. The product that came out of the 

machine was checked and tidied first and then 

packed. The packaged product was taken to the 

warehouse. It waited for the release schedule before 

being sent to the consumer. The required time was 

the cumulative time starting from the raw material 

collection, product specification setting, production 

process to finished goods. The first work on each 

machine was considered ready and did not count the 

setup time. Production time was only calculated until 

all product requests were made. 

 
The data for the case study, which was collected from 
PT. Asia Plastic are presented in Table 6. 
 
We need to determine how many product types 
should be scheduled and how long the product could 
be completely produced using the dataset presented 
in Table 6. Additionally, we also need to discover how 
many machines need to complete product orders. The 
processing time of each product was obtained from 
calculations using the processing time of each job on 
each machine is depicted in Table 7. 
 
Table 7 refers to a condition set on the machine used 
by the company. The cycle time is the required time 

for one injection, while the number cavity is the 
number of patterns that affect the number of prints in 
one injection. The data was employed to calculate the 
production process time for each job on each machine. 
The followings are examples of the calculation. 
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Job 1 on machine 1 =
𝑑𝑒𝑚𝑎𝑛𝑑 𝑥 𝐶𝑡

𝑁𝑐 𝑥 3600
=

80000 x 32

12 x 3600
≅  60 hours 

Job 1 on machine 2 =
𝑑𝑒𝑚𝑎𝑛𝑑 𝑥 𝐶𝑡

𝑁𝑐 𝑥 3600
=

80000 x 31

16 x 3600
≅ 44 hours 

Job 1 on machine 3 =
𝑑𝑒𝑚𝑎𝑛𝑑 𝑥 𝐶𝑡

𝑁𝑐 𝑥 3600
=

80000 x 29

16 x 3600
≅ 41 hours 

 
Real Scheduling of the Company 
 
In planning regular production scheduling, compa-
nies use the rules of First Come First Out or Earliest 
Due Date. The company scheduling uses the First 

Come First Out method in which the ordering is 
based on the arrival time. Meanwhile, the Earliest 
Due Date scheduling is based on the due date. A 
comparison of work order sequences between the 
rules of the First Come First Out and th Earliest Due 
Date is presented in Figure 1 and Figure 2 in the form 
of a Gantt chart. In addition to the Gantt chart, the 
comparison of scheduling sequences is also presented 
in Table 9. 
 

Table 6.  Job and the processing time 

No. Product names 
Quantity 

(pcs) 

Processing Time (Hours) 
Date of entry Due date 

M1 M2 M3 

1. Bottle caps 1000cc 80,000 60 44 41 02 July 2019 30 July 2019 

2. Pet fertilizer caps 100,000 72 53 51 03 July 2019 26 July 2019 

3. Jerry can cap 5 l 95,000 69 66 48 03 July 2019 27 July 2019 

4. Clock frame  17,000 166 166 161 03 July 2019 31 July 2019 

5. Clock body  17,000 166 166 161 03 July 2019 31 July 2019 

6. Seashell basket 21,000 103 103 103 07 July 2019 30 July 2019 

7. Caps M 500cc 95,000 71 53 50 08 July 2019 31 July 2019 

8. Bottle caps 1000cc 120,000 89 65 61 09 July 2019 07 August 2019 

9. Pet fertilizer caps 120,000 87 63 61 13 July 2019 02 August 2019 

10. Clock body  15,000 146 146 142 16 July 2019 01 August 2019 

11. Clock Frame 15,000 146 146 142 16 July 2019 01 August 2019 

12. Caps M 500cc 110,000 82 62 58 17 July 2019 08 August 2019 

13. Jerry can cap 5 l 115,000 83 80 58 18 July 2019 10 August 2019 

14. Seashell basket 30,000 146 146 146 19 July 2019 06 August 2019 

15. Pet fertilizer caps 95,000 69 50 48 19 July 2019 04 August 2019 

 
Table 7. Processing time of each job on each machine 

No Product names 

Machines 

M1 M2 M3 

Ct (sec) Nc Ct (sec) Nc Ct (sec) Nc 

1 Bottle caps 1000cc 32 12 31 16 29 16 

2 Pet fertilizer caps 31 12 30 16 29 16 

3 Jerry can cap 5 l 31 12 30 12 29 16 

4 Caps M 500cc 32 12 32 16 30 16 

5 Clock frame  35 1 35 1 34 1 

6 Clock body  35 1 35 1 34 1 

7 Seashell basket 35 2 35 2 35 2 

Ct is the cycle time (seconds), Nc is the number of cavity (number of print patterns) 

 
Table 8. Matrix of machine setup time 

From/ 

To 

Job ( hours ) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

J
ob

 (
 h

ou
rs

 )
 

1 0 5 5 7 4 6 5 3 5 4 7 5 5 6 5 

2 5 0 5 7 4 6 5 5 3 4 7 5 5 6 3 

3 5 5 0 7 4 6 5 5 5 4 7 5 3 6 5 

4 7 7 7 0 4 6 5 5 5 4 3 5 5 6 5 

5 4 4 4 4 0 6 5 5 5 3 7 5 5 6 5 

6 6 6 6 6 6 0 5 5 5 4 7 5 5 3 5 

7 5 5 5 5 5 5 0 5 5 4 7 3 5 6 5 

8 3 5 5 5 5 5 5 0 5 4 7 5 5 6 5 

9 5 3 5 5 5 5 5 5 0 4 7 5 5 6 3 

10 4 4 4 4 3 4 4 4 4 0 7 5 5 6 5 

11 7 7 7 3 7 7 7 7 7 7 0 5 5 6 5 

12 5 5 5 5 5 5 3 5 5 5 5 0 5 6 5 

13 5 5 3 5 5 5 5 5 5 5 5 5 0 6 5 

14 6 6 6 6 6 3 6 6 6 6 6 6 6 0 5 

15 5 3 5 5 5 5 5 5 3 5 5 5 5 5 0 
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Table 9. FCFO vs EDD  

Criteria 
Method 

FCFO EDD 

Maximum tardiness (hour) 175 85 

Makespan (hour) 559 511 

Number of late jobs (job) 4 5 

Average tardiness (hours/job) 28.07 17.87 

 
From Figure 1 and 2, it can be concluded that 
company scheduling using FCFO and EDD rules are 
quite different. The two figures have several differen-
ces. For example, the FCFO scheduling method in job 
1 is done on machine 3 while the EDD scheduling 
method is done on machine 1. The comparison of the 
job execution sequence reveals that the EDD rules 
provide a more even machine loading compared to the 
FCFO scheduling method. 
 
Table 9 shows the results of the company’s scheduling 
performance of FCFO and EDD methods. The 
scheduling results obtained four criteria of scheduling 
with the FCFO method. First, the maximum 
tardiness was 175 hours. This condition indicates that 

the total number of late jobs, the longest time, and 
work increased to 175 hours from the agreed limit. 
Second, the total of the makespan was 559 hours. 

This condition indicates that the last work done on 
the injection molding machine was completed for 559 
hours counted from the 0th time.  Third, the number 
of jobs was more than four jobs. This condition means 
that the work on injection molding machines from the 
four jobs exceeded the predetermined time limit. 
Fourth, the average tardiness was 28.07 hours/work. 
This condition indicated that the average number of 
jobs to complete on a molding machine between July 

and August 2019 was related to the tardiness of 28.07 
hours/work. The criteria for scheduling a company’s 
EDD method are 1) maximum tardiness of 85 hours, 
2) the makespan of 511 hours, 3) the number of jobs 
exceeding five jobs, and 4) average tardiness of 17.87 
hours/work. 

 

Ant Colony Optimization (ACO) 

 

ACO method scheduling was done with the help of 

Matlab software. The parameters used in scheduling 

the ACO method were 1) pheromone constant ( ) of 

0.5, 2) constant control of ant trail intensity (α) of 1, 3) 

visibility control constant (β) of 3, 4) evaporation of 

pheromone traces (𝜑) of 0.5, 5) the number of ants (k) 

of 30, and 6) maximum iteration of 50,000. 

 
 

Figure 1. Gantt chart of first come first out method 

 
Figure 2. Gantt chart of early due date method 

 

 
 

Figure 3. Gantt chart of the ant colony method 
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In this study, the company's initial machine 

scheduling applied the Ant Colony Algorithm method 

to produce more significant solutions than the 

company's current initial machine scheduling. 

 

Pheromone is the weight on each trajectory and was 

used to place job i in the ant position k. The phero-

mone update calculation (τ) on the Ant Colony algo-

rithm was employed to determine how the machines 

were used in the company. Then, the pheromone 

calculation was updated with several iterations until 

a pheromone value converged to the next iteration. 

When the stops were fulfilled (the value was con-

verging) or the maximum iteration was completed, 

then the next sequence of production processes was 

taken with the smallest makespan. The scheduling 

based on ACO is presented in Figure 3.  

 

The scheduling using the running program trial 

discovered that the makespan value was 473 hours. 

This result was better than that of the company’s 

scheduling using FCFO and EDD, of which the 

makespan value was 559 and 511 hours. The ACO 

method scheduling sequence is different from the 

FCFO and EDD methods. The use of Gantt chart as 

output was more easily understood and looked more 

attractive. Job 1 ACO method was done on machine 

2, FCFO is done on machine 3, and EDD job 1 was 

done on machine 2. In addition, Figure 4 describes the 

output graph to find out that the ACO iteration is 

already in a stable condition. 

 

Table 10 was obtained from the program memory. It 

is known that the makespan value in the first 

iteration is 784 hours. The score changes in the second 

iteration for 590 hours and so on until the optimum 

value is obtained under steady conditions for 473 

hours in iteration 30,467. Table 11 describes the 

consistency of the algorithm by running the algorithm 

multiple times and shows the mean and standard 

deviation of the ACO’s performance. 

 

Table 12 concludes that the company’s scheduling 

using the FCFO rules and EDD rules differ from the 

ACO scheduling. The difference is shown by several 

examples. The FCFO scheduling of job 1 was done on 

machine 3, the EDD method was done on machine 1, 

and scheduling ACO job 1 was done on machine 2. 

Meanwhile, the comparison of the sequence of job 

execution can be seen from the Gantt chart showing 

that the ACO method gives more equitable machine 

loading compared to company scheduling using the 

FCFO and EDD methods. 

 

Table 13 presents that the best scheduling perfor-

mance was gained when the company applied the 

EDD method. The scheduling results obtained  

 
Figure 4. Chart Output of the Best Cost ant Colony Method 

 
Table 10. The Process of finding the best makespan 

Iteration  makespan  

1  784 

2  590 

4  571 

9  530 

13  500 

74  499 

128  497 

159  496 

400  494 

428  489 

1158  480 

30,467  473 

 

four performance criteria for the company scheduling 

by EDD method. First, the maximum tardiness was 

85 hours. This condition indicated that the completion 

of some jobs was late, and the longest time of a job 

exceeded the time limit for 85 hours from a 

predetermined limit. Second, the makespan was 511 

hours. This condition indicated that the last job done 

on the injection molding machine was completed for 

511 hours counted from the 0th time. Third, the 

completion of five jobs was late. This condition 

indicated that the completion of five jobs using the 

injection molding machines exceeded the determined 

time limit. Fourth, the average tardiness was 17.87 

hours/job. This condition indicated that because the 

average number of jobs had been done on the injection 

molding machine from July to August 2019, the 

tardiness was 17.87 hours/job. The scheduling 

performance of the ACO method had four criteria. 

First, the maximum tardiness was 83 hours. Second, 

the makespan was 473 hours. Third, the number of 

late jobs was five jobs. Fifth, the average tardiness 

was 16.33 hours/job. 

 

The next step was to compare the ACO method with 

the best scheduling method of the company (EDD) to 

find out the savings that the ACO method could offer. 

The comparison results are presented in Table 6. The  
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Table 13. Measure comparison of company methods and ACO  

Criteria  
 Method 

FCFO EDD ACO 

Maximum tardiness (hour) 175 85 83 

Makespan (hour) 559 511 473 

Number of late jobs (job) 4 5 5 

Average tardiness 

(hours/job) 
28.07 17.87 16.33 

 

comparison denotes that the ACO method had the 

best results because the ACO method was the 

smallest for all criteria of the company methods. The 

use of the ACO method enabled the division of jobs on 

all machines to be distributed more evenly. Conse-

quently, the makespan values could be further 

minimized. 

 

Conclusions 
 

This paper discussed the scheduling problems for 

parallel machines. A case study was conducted in PT. 

Asia Plastic. The company is currently applying 

FCFA and EDD. This study introduced the ACO to 

the company to improve its scheduling performance. 

The ACO had the makespan 38 hours fewer than 

EDD. Moreover, the ACO could reduce maximum 

tardiness up to two hours compared to EDD. 

Scheduling fair and equitable jobs on each machine 

could save the company’s resources, such as time, 

energy, labor, and production costs. This condition 

indicated that the ACO algorithm could solve 

problems in unrelated parallel machine scheduling to 

non-identical. 

 

This study has signified the practical implication in 
which the company could plan jobs and the appro-
priate machines. Thus, each job will not exceed the 
due date agreed by the company and consumers. On 
the other hand, the theoretical implication showed 
that many studies reported that ACO could be 
combined and compared with other methods 
according to the conditions and objectives. This study 
suggests that future researchers interested in 
investigating the same issue can transfer each job to 
another machine because the company’s machines 
have the same function. The problem is that the 
company must continuously reset the machine 
setting if it produces high variance. The machine 
setup time is an essential factor in calculating the 
makespan and tardiness. 
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