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Abstract: This research seeks to determine the optimal price for mobile broadband services of a 

particular service provider. The case study is mobile broadband services in the Indonesian 
market. We made a plausible assumption that there is no capacity constraint. We used choice-
based conjoint with hierarchical Bayes estimation method to derive individual part-worth 
utilities, based on which market simulation was run to obtain the share-of-preference function. 
By combining this with information about market size, we came up with data points 
representing the demand function. Instead of fitting the data points with some theoretical 
demand functions, we used monotonic cubic splines to interpolate the demand function. 
Accordingly, we did not use explicit demand functions in the optimization, but a numerical 
interpolation function to estimate demand for any particular price level. Using enumeration, we 
then came up with a recommended contribution-maximizing prices under one, two, and three 
fare-classes segmentation. We assumed a perfect segmentation where cannibalization and 
arbitrage were not present. Single-segment pricing optimization came up with an optimal price 
of Rp135,200 with a total contribution of Rp1,106,902,315,961. Increasing the number of fare-
class to two has improved the total contribution by 21,23%, while the three fare-class resulted in 
a further 50% increase in total contribution compared to that of the two fare-class. Further, we 
discussed a generalized optimal segmentation problem under the same assumption. We also 
investigated the impact of changes in competitors’ service attributes on the optimal prices. 
 

Keywords: Uncapacitated pricing optimization; choice-based conjoint; hierarchical 
Bayes; demand function; monotonic cubic splines. 
  

 

Introduction 
 

It has been more than three decades after the 

success of American Airlines implementing the first 

revenue management (or yield management) initia-

tive in the mid-1980s that pricing and revenue 

optimization have become more tactical and opera-

tional. Pricing optimization, capacity allocation, and 

network management have been the central topics 

in this field, and statistics and operations research 

had been important tools for analysis (Phillips [1]). 

The success story of American Airlines resulted in 

widespread of revenue management initiatives 

across many industries, including telecommunica-

tion industry. 

 

Research on pricing optimization in telecommunica-

tion industry is sparse. Most of these few focused on 

dynamic pricing and covered voice service, i.e. Keon 

and Anandalingam [2], Bouhtou et al. [3], and 

Dorgham et al. [4]. Keon and Anandalingam [2] 

developed a two-stage pricing mechanism which is 

dynamic pricing that gives a discount based on the 

system congestion. Bouhtou et al. [3] solved a pricing 

decision  problem  for  voice  service based on the  
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network condition using mixed-integer program-
ming, while Dorgham et al. [4] developed a model of 
dynamic pricing based on the quality of service (QoS) 
for voice service using Monte Carlo simulation and 
meta-heuristics. Research that focused on wire-
less/mobile service is one by Yang and Ng [5] which 
developed nonlinear mixed-integer programming for 
product and service bundling problem which gives 
discounts on the price of the product based on the 
price of the service.  
 
Mobile broadband is one of the most popular tele-
communication services in a retail market. In 
Indonesia, mobile broadband service is offered with a 
flat monthly tariff under a particular QoS, usually 
regarding maximum speed and data quota. This 
research seeks to determine the optimal price for 
particular mobile broadband service. The case study 
is mobile broadband services in the Indonesian 
market. We assume that service provider does not 
have a capacity constraint. This assumption is 
plausible since increasing capacity to a certain 
level can be done very easily and fast. We used 
willingness-to-pay (WTP) approach and choice-based 
conjoint (CBC) method to derive part-worth utilities 
for each respondent, based on which a market 
simulation was run to obtain some data points which 
represent the share-of-preference function. Other 
research that used conjoint analysis to estimate 
WTP for telecommunication services is one by Klein 
and Jakopin [6], which used limit conjoint analysis to 
estimate WTP for service bundle.  
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Using the share-of-preference function and informa-

tion about the size of the market, we came up with 

data points for the demand function. Once we have 

data points representing the demand function, two 

approaches can be used to incorporate them into the 

optimization. The first approach is to fit the data 

with a particular theoretical demand function and 

estimate its corresponding parameters. The reader 

can refer to Huang et al. [7] for a comprehensive 

survey on the demand functions, both deterministic 

and stochastic. If demand is assumed to be deter-

ministic, the least-squares method can be used to 

estimate the parameters of the function of interest. If 

we assume stochastic demand, we can use the 

Kalman filter (Kalman [8]) combined with a maxi-

mum likelihood function (Tommaso and Alessandra, 

[9) to estimate the parameters of the demand 

function. The advantage of this approach is that the 

demand function directly used in the optimization. 

The drawback is that we usually come up with a 

function that is not perfectly fit with the data. 

Another issue is that for a particular situation some 

demand function is not realistic, e.g. constant-

elasticity demand function is infinite and not 

satiating. Hence, to obtain a perfect fit, instead of 

fitting the data points with some general demand 

function, we used monotonic cubic splines to inter-

polate the demand function. Accordingly, we did not 

use explicit demand functions in the optimization, 

but a numerical interpolation function to estimate 

demand for any particular price level. 
 

The objective function of the optimization problem 

was to maximize total contribution from all fare 

classes. The number of fare classes was predeter-

mined and limited up to three, and the corres-

ponding class boundaries were subjectively deter-

mined. 
 

In marketing literature, prices are set around three 

primary considerations, i.e. cost, customers, and 

competitors, which lead to the so-called cost-plus, 

customer-driven, and share-driven pricing (Nagle et 

al. [10]). The approach to pricing that we propose in 

this paper balances these three aspects of pricing. 

Cost is accommodated as incremental cost in the 

pricing optimization formulation, while customers 

and competitors go into the pricing optimization 

through the demand function. Through a market 

simulation, the points of demand data obtained to 

accommodate the effect of competition. The market 

simulation runs under a particular competitive sce-

nario where some competitors are present with their 

corresponding levels of service attributes. The 

service attributes level changed by competitors will 

affect the demand function assessed by running the 

market simulation under the new scenario. 

Methods 
 
In this section, we describe three main methods used 

in this research, i.e. pricing optimization without 

capacity constraints, choice-based conjoint and hie-

rarchical Bayes estimation method, and inter-

polating demand functions. 

 
Uncapacitated Pricing Optimization Problem 

 

Suppose a mobile broadband service provider faces a 

demand function      for a particular service and a 

particular customer segment, where   is the mon-

thly charge for the usage of the service. The uncapa-

citated contribution-maximizing price with one fare 

class can be obtained using 

 

                                   (1) 

 
where      is the total contribution and   is the 

incremental cost (Phillips [1]). Incremental cost is an 

additional cost incurred by a producer for one 

additional customer. In multiple fare problem with   

fare classes, the maximization problem becomes 

 

          
           ∑             

     (2) 

 
Using basic calculus, by assuming independence 

between fare classes, the maximum total contri-

bution will be achieved when the optimal price for 

each fare class,   
 , satisfies 

 

    
         

     
                        (3) 

 
The optimization will be much more complicated 

when there are imperfect segmentations in the form 

of cannibalization and arbitrage.  

 

In this research, we used WTP approach to derive 

demand functions. Using this notion, demand func-

tion,     , was estimated from 

 

      ∫     
 

 
                            (4) 

 
where   is the size of the market segment and      

is the WTP function. We assumed myopic consumers 

who buy as soon as the offered price is less than their 

WTP (Talluri and van Ryzin [11]). The first compo-

nent of the demand function,  , was estimated as 

total market size multiplied by market segment 

proportion. For the second component, instead of 

deriving      and taking the corresponding integral, 

we used CBC and market simulation to come up 

with estimated values of ∫     
 

 
  . 
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Figure 1 shows how CBC data is used to estimate 

price-response or demand function for pricing 

optimization.  

 

The methodology combines three methods that are 

considered robust, i.e., HB estimation (Sawtooth 

Software [12]), market simulation based on rando-

mized first choice (Orme and Baker [13]), and 

monotonic cubic spline interpolation (Wolberg and 

Alfy [14]). The following two subsections describe 

those three in detail. 

 
Choice-Based Conjoint and the Hierarchical 
Bayes Estimation Method 

 

Jedidi and Jagpal [Error! Reference source not 

found.] argued that―compared to other methods for 

deriving WTP function such as using actual pur-

chase data, self-stated WTP, contingent valuation 

methods (CVM), and experimental auction―CBC is 

the best method for determining demand function in 

a competitive setting. In a CBC study, consumers 

are repeatedly asked to choose between some stimuli 

in randomly generated choice sets. Each choice set is 

made realistic by adding a ‘none' option. A CBC 

questionnaire consists of some choice sets (usually 

12-18). Consumer preferences can be estimated from 

these choice data using logit, latent class, or hierar-

chical Bayes method (Orme [0]). 

 

CBC experiment is realistic since it resembles the 

way consumers make decisions in the market. It is 

also less biased compared to other conjoint methods 

as it puts the less informational burden on the res-

pondents. The only weakness associated with CBC is 

the existence of hypothetical bias. Hypothetical bias 

is bias due to the hypothetical nature of choice set in 

the CBC questionnaire. This bias is common to all 

stated preference methods. Discussion on the causes 

of and remedies for hypothetical bias in CBC can be 

found in Orme and Chrzan [17]. 

 

Our CBC study design used five attributes following 

the result from Amelia [18], i.e. provider, payment 

method, data quota, speed, and monthly price. There 

are 5, 2, 5, 5, and five levels for each attribute, 

respectively. Instead of conducting a CBC survey, we 

used choice data from Susanta [19] which used the 

same attributes and levels as in Amelia [18].  

 

We used hierarchical Bayes (HB) to estimate consu-

mer preferences from CBC data. HB, which produces 

utility estimates at an individual level with good 

accuracy (Orme [0]), has two stages of estimation. At 

the upper stage, HB estimates part-worth utilities 

for each respondent, while at the lower stage HB 

estimates the probability of each respondent choos-

ing a certain stimulus (Sawtooth Software, Inc., 

[12]). HB assumes that the part-worth utilities of 
each respondent,   , follow a multivariate normal 

distribution with a mean vector of  , and a 

covariance matrix of  . The value of   ,  , and   can 

be estimated using recursive process employing the 

Cholesky decomposition and the Metropolis-

Hastings algorithm until the values of those three 

converge (see Figure 2). 
 

Once we have the individual part-worth utilities, the 

probability of choosing a particular alternative  , is 

governed by the multinomial logit model 
 

   
   

   

∑  
  
    

   

                    (5) 

 

In the above formula    is the probability that a respondent 

chooses the  th concept in a particular choice task, while   
  

and   
  is the row vector of the  th and  th stimuli in the 

choice task. 

 

Figure 1. Methodology to estimate demand function from CBC data for pricing optimization 
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Figure 2. Hierarchical Bayes estimation method 

 

We used Sawtooth Software CBC/HB to estimate 

part-worth utilities from CBC data using hierar-

chical Bayes method.  

 

The use of CBC with HB estimation method, which 

results in the part-worth utilities at an individual 

level, enables us to run a market simulation with 

any scenario that we are interested in. The output of 

the simulation is the proportion of the respondents 

that would choose a stimulus of interest called share 

of preference. If the respondents are representative 

of the market, then this share of preference would be 

the estimate of market share. This simulation 

feature would be very useful in product design and 

development and marketing research. 

 

The market simulator calculates the estimated share 

of preferences using the randomized first choice 

method (Huber et al. [20]). This method adds two 

random elements to the utility of stimulus   for 

respondent  ,    , i.e. product variability,   , and 

choice variability,   , both are assumed to be of 

Gumbel distribution (Orme and Baker [13]). Then, 

we have 
 

      
 (     )                     (6) 

 
The share of preference for stimulus   in choice set   

is calculated as the aggregation of choice probability 

of each respondent 
 

    (            )               (7) 

We used Sawtooth Software SMRT to run the 
market simulation from individual part-worth utility 
data. Using individual part-worth from each respon-
dent, we can estimate the share of preference for 
each product concept in any given scenario. When 
the simulation runs for a given scenario under 
varied price levels, we will have some data points for 
our demand function, which later will be inter-
polated to obtain the demand function. 

 
Interpolating the Demand Function 
 
In this research, we assume that demand is deter-
ministic. Under a deterministic assumption, if we 
cannot find one demand function that fit all the 
demand data points, it is very intuitive to think that 
maybe we can find some functions that, when 
combined to form one continuous function, fit all the 
demand data points. This is the basic idea of the 
spline interpolation method. In addition to the 
continuity property, a demand function has to be 
non-increasing (Phillips [1]) motivating us to use the 
monotonic cubic spline interpolation (Wolberg and 
Alfy [14]) to interpolate the demand function. 
 
In our case, suppose we have n demand data points 
{[     ] [     ]   [         ]}, and let          
be the function defined for interval [       ]. This 
method aims to find a piecewise cubic polynomial, 
     consisted of     sections that fit all   demand 
data points. Constraints on the continuity of        
and         are imposed to ensure continuity over 
the range of  . Accordingly,       has the following 
form 
 

              
          

    
                                                     (8) 
 

where    
 

   
 (  

   

   
   

      
 ),    

 

   
( 

   

   
    

      
 ),      

 , and      . The 

reader can refer to Wolberg and Alfy [14] for a 
complete formulation of the monotonicity condition. 
This approach guarantees the fitness of the demand 
function with all demand data points. The disadvan-
tage of this approach is the complexity of the 
optimization formulation if we are to use the explicit 
polynomial functions of the demand. Instead of em-
bedding explicit demand functions into the opti-
mization, we use numerical interpolation based on 
those polynomial demand functions. 

 

Results and Discussions 
 
Demand Function 

 

We used choice data from 231 respondents who were 

collected from an online survey using Sawtooth 

Software SSI Web v7.0.30 by Susanta [19]. The CBC 

questionnaire consists of fifteen choice tasks out of 
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which thirteen choice tasks are random, and two 

choice tasks are fixed. The fixed choice tasks were 

used later to assess the validity of the estimated 

part-worth utilities. Each choice task contains three 

product concepts and one ‘none’ option with the full-

profile presentation.  Table 1 presents the attributes 

and levels of the CBC questionnaire.  

 

Each respondent answered a different set of ques-

tions which were randomly generated by the 

software in such a way that the overall question-

naires are balanced, orthogonal, and have minimum 

overlaps (Chrzan and Orme [21]). Some prohibitions 

were also made in the questionnaire design to 

prevent the occurrence of improbable product con-

cept, such as one with superior quality attributes but 

low price.  

 

Sawtooth Software CBC HB v5.5.4 was used to run 

the HB estimation method. The output of the HB 

estimation indicated that the parameter estimation 

had converged and was about 70% of a perfect fit. A 

root likelihood of 0.659 indicated that the resulted 

part-worth utility was 0.659/0.250 = 2.636 times 

better in predicting respondent's choice compared to 

a random guess. We also tested the internal validity 

of the HB estimates by comparing actual choices 

from the fixed choice tasks with those predicted by 

the part-worth utilities. Table 2 presents the result 

of internal validity test using the first fixed choice 

task. 

 

We obtained a mean absolute error (MAE) of 6.53% 

which, for our choice task design (each consisted of 

three stimuli and one ‘none’ option), corresponds to a 

mean absolute percentage error (MAPE) of 6.53%/ 

25% = 26.12%. Using the same procedure on the 

second fixed choice task, we got a MAPE of 25.74%. 

Hence, the average MAPE of those two fixed choice 

tasks was 25.93% suggests that the model had a 

relatively low accuracy, which may be due to small 

sample size. The academic license that we used in 

this research limits the number of data that runs in 

the estimation procedure to a maximum of 250, but 

incomplete data and limited time that the previous 

researcher had in conducting the survey (Susanta, 

[19]) resulted in only 231 data were eligible for 

estimation.  

 

Using the respondent’s utilities as input, we ran the 

market simulator Sawtooth Software SMRT v4.23 to 

get the price-response curve. The simulation was run 

under a scenario where there were five products (all 

are prepaid) with the following configurations: (1) 

Provider A – 2GB, 7.2 Mbps, Rp90,000; (2) Provider 

B – 2GB, 7.2 Mbps, Rp50,000; (3) Provider C – 

500MB, 7.2 Mbps, Rp50,000; (4) Provider D – 8GB, 

768 Kbps, Rp90,000; and (5) Provider E – 5GB, 3.1 

Mbps, Rp90,000. 

Table 1. Attributes and levels of the CBC questionnaire 

Attributes Levels 

Provider Provider A; Provider B; Provider C; 

Provider D; Provider E 

Payment method Prepaid; Postpaid 

Data quota 500MB; 2GB; 5GB; 8GB; 10GB 

Maximum speed 768kbps; 1.8Mbps; 3.1Mbps; 

7.2Mbps; 14.4Mbps 

Monthly price Rp50,000;         Rp90,000; 

Rp130,000;       Rp250,000; 
Rp450,000 

 
Table 2. Internal validity test using first fixed choice task 

Stimuli of the 

1st fixed choice 

task 

Actual shares 

of preference 

Simulated 

shares of 

preference 

Absolute 

errors 

Stimulus 1 9.09% 19.62% 10.53% 

Stimulus 2 10.39% 7.48% 2.91% 

Stimulus 3 46.75% 36.61% 10.14% 

None 33.77% 36.29% 2.52% 

  MAE 6.53% 

 

This scenario represented the real competitive 

market condition when conducted the survey. Since 

we were to optimize pricing tactic for Provider A, we 

simulated by varying the price of Provider A while 

keeping other attributes constant. Five data points 

were obtained from the simulation. Two data points 

were added subjectively, one indicating the share of 

preference when the price is zero, and one indicating 

the satiating price. Satiating price is the price at 

which demand drops to zero (Phillips [1]).  

 
To get a demand curve in term of a number of 
customers, we multiplied the share of preference 

with the estimated size of the market segment. From 
the market survey conducted by the Association of 
Indonesia Internet Service Providers in 2016, there 
are about 130.3 million consumers that have mobile 

internet access [22], while from the research con-
ducted by PT. Telekomunikasi Indonesia, Tbk., it 
was estimated that 43.49% of mobile service custo-
mers are in the low-end segment [23]. Hence, there 

are about 56.67 million customers in this market 
segment. By multiplying the share of preference 
with the estimated size of the market segment 

resulted in the demand data points. Table 3 presents 
all demand data points3. 

 
To estimate demand for those data points we used 

the free SRS1 Microsoft Excel add-in which has an 

elementary function to return the demand given any 

price level. This function has three arguments, i.e. 

source data of the predictor variable, source data of 

the predicted variable, and the value of the predictor 

variable whose predicted variable we wish to esti-

mate. Figure 3 depicts the demand curve inter-

polated using this function. 
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Pricing Optimization with One Fare-Class 
 

The complete formulation of the uncapacitated 
pricing optimization with one fare class is as follows: 
 

                    

                                     (9) 

 
Since we did not have the explicit functions of the 
demand, we used an enumeration to solve the opti-

mization problem. Assuming the incremental cost to 

be Rp 25,000 and using a step-value of Rp 100 for 
the decision variable, we came up with the optimal 
price of Rp 135,200. At this price level, the 
demand is 10,044,486 with a total contribution of  

Rp 1,106,902,315,961. 
 
Pricing Optimization with Two Fare-Classes 
 

Two fare-class pricing optimization requires two 

demand functions, one for each segment. For the two 
fare-class problems we divided the market into two 
segments based on the demand elasticity value. This 
segmentation was a plausible assumption in segre-

gating the market and was equivalent to diffe-
rentiating between consumers that have elastic 
(elasticity greater than 1) and those with inelastic 

demand (elasticity smaller than 1). We calculated 

the elasticity for every price interval of Rp100 and 
took an elasticity value of one as the cutoff. We found 
that the cutoff point corresponds to the price level of 
Rp88,400. We assumed further that the segregation 

of the segments was perfect which means that there 
was no cannibalization and arbitrage. Cannibaliza-
tion happens when customers in high-price seg-
ments find a way to pay the lower price, while 

arbitrage happens when price differentials make a 

third-party arbitrageurs find a way to buy the 
product at the low price and resell it to customers 
with high WTP at a below-the-market price, and 
keeping the difference as a profit for themselves 

(Phillips [1]). Using these conditions, we split the 
demand function into two separated segments as 
depicted in Figure 4. 
 

Segment 1 consists of consumers with elastic 
demand which correspond to those that have higher 

WTP, while segment 2 are consumers with inelastic 
demand and correspond to those with lower WTP. 
Accordingly, we had demand function for segment 
one as follows: 
 

                                 (10) 

 
moreover, the demand function for segment 2 was as 

follows 
 

                                       (11) 

 
The optimization problem for the two fare-classes 

became 
 

        
                                

                                
                                         (12) 

 

Assuming the same incremental cost and step-value, 
by using enumeration, we came up with the optimal 
price of Rp135,200 for segment 1 and Rp48,500 for 
segment 2 with corresponding total contribution of 

Rp 1,106,902,315,961 and Rp 234,949,822,549, res-
pectively. Total contribution for two fare-class is Rp 
1,341,852,138,511, a 21.23% increase compared to 
that of single fare-class. 

Table 3. Demand data points for Provider A 

Price (Rps) 0 50,000 90,000 130,000 250,000 450,000 600,000 

Share of preference 100% 44.71% 27.66% 18.59% 8.28% 3.88% 0% 

Demand (millions) 56.67 25.34 15.67 10.53 4.69 2.19 0 

 

      
Figure 3. The demand curve for Provider A                              Figure 4. Splitting demand function into two fare-classes 

 

 



Pratikto / Uncapacitated Pricing Optimization / JTI, Vol. 20, No. 1, June 2018, pp. 49–58 

55 

 

Figure 5. Splitting demand function into three fare-

classes. 

 

Pricing Optimization with Three Fare-Classes 

 

For the three fare-class pricing optimization, we 

divided the market as follows: segment 1 were 

customers with WTP > Rp 250,000, segment 2 were 

those with Rp 88,400 < WTP ≤ Rp 250,000, and seg-

ment 3 were those with WTP < Rp 88,400. Referring 

to market segregation in the two fare-classes 

problems, what we did was splitting the higher WTP 

segment into two segments while keeping the lower 

WTP segment as it was. 

 

Figure 5 depicts the split of the demand functions 

into three segments. The corresponding demand 

functions were                           , 
                                   , and 

                              for segment 1, 

segment 2, and segment 3, respectively. Accordingly, 

follows is the pricing formulated optimization pro-

blem 
   

        

                                     

                                                 
                              

                                 
                                                            (13) 

 

Using the same procedure, we came up with optimal 

price of Rp 250,000 for segment 1, Rp 88,500 for 

segment 2, and Rp 48,500 for segment 3, with total 

contribution of  Rp 1,055,714,966,100,  

Rp 714,819,897,552, and Rp 234,949,822,549 for 

segment 1, segment 2, and segment 3, respectively. 

The total contribution from all classes was Rp 

2,005,484,686,201, an almost 50% increase compar-

ed to that of the two fare-class. 

 

Optimal Segmentation 

 

Our findings supported the theoretical assertion that 

higher number of segment results in higher total 

contribution. In practice, the limit to segmentation is 

the feasibility to implement it without imperfections 

(e.g. cannibalization and arbitrage). In our opti-

mization problems, boundaries between segments 

were given. In fact, this parameter does affect the 

total contribution. If we are to consider these 

boundaries as decision variables in the pricing 

optimization, the optimization problem becomes 

much more extensive. Suppose we divide customers 

into   mutually exclusive and independent segments 

such that                 , and define 

the boundaries,   , such that              for 

          and            . Then, the 

formulation for optimal segmentation with   

segment is as follows 

   
                         

                          

    (           )       

    (                       )       

   

    (                        

       )          

     (             )                      (14) 

                           ;            

 

The size of this optimization problem depends mostly 

on the number of fare-class. If we are to solve this 

problem using our approach (enumeration with non-

explicit demand function), the size of the discrete 

solution space will also be affected by the price grid. 

If we divide the price continuum into   grids and 

divide customers into   segments, the number of 

alternative solutions that have to be evaluated is 

about   .  

 

What-if Analysis 

 

What would happen if competitors change the levels 

of their product attributes? We picked one scenario 

as an illustration and suggested that other scenarios 

can be analyzed in a similar way. Suppose that the 

strongest competitor, Provider C, changed its quota-

price combination from the current level of 2GB – Rp 

50,000 to 5GB – Rp 90,000, and we were to analyze 

how it affects the optimal price. We ran a market 

simulation based on a new scenario that incor-

porates this change. Table 4 depicts the data points 

resulted from the simulation. Using these new data 

points, we estimated the new demand function using 

the monotonic cubic spline interpolation and then 

embedded it into the optimization as in equation 8. 

 

In the one fare-class pricing optimization we came 

up with an optimal price of Rp 111,700 and the 

corresponding total contribution of Rp 923,827, 

567,833, a 16.54% decrease compared to that of the 

scenario without the changes. 
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This illustration shows the benefit of using CBC with HB 

estimation method in deriving demand for pricing 

optimization. The individual level part-worth utility values 

and market simulation capability give us flexibility in 

assessing any probable scenario that we might face in the 

market. This is useful in situations where markets are 

dynamic, and competitors may frequently change the level of 

their products' attributes. A drawback of this approach is that 

we can only simulate scenarios regarding levels of attributes 

that we have defined earlier (discrete levels). It is not possible 

to choose a level value somewhere in between (continuous 

level). This can be accommodated using continuous price in 

the CBC questionnaire design, but it comes at a price. See 

Orme [24] for further discussion on the pros and cons of using 

continuous price in CBC study 

 

Conclusion 
 

In this research, we developed an uncapacitated 

pricing optimization model for mobile broadband 

services in which the estimated demand function 

from CBC data. Using hierarchical Bayes estimation 

method and market simulation, some data points 

that represent the demand function were obtained 

from the CBC data. The demand function was then 

estimated from the data points using monotonic 

cubic spline interpolation. Instead of using an 

explicit demand function, we embedded the demand 

function into the optimization using numerical 

interpolation. This approach was quite flexible that 

the impact of any changes in the levels of the 

service's attributes (of both ours and our competitors) 

and other mode parameters on the optimal prices 

could be assessed and estimated easily by running 

the market simulation under the revised scenario. 

 

For single fare-class pricing, we obtained an optimal 

price of Rp 135,200 with a total contribution of Rp 

1,106,902,315,961, while for two fare-class problems 

we got optimal prices of Rp135,200 for a higher-WTP 

segment and Rp 48,500 for the lower one, with a 

total contribution of Rp 1,341,852,138,511, a 21.23% 

increase compared to that of the single fare-class. 

For the three fare-class problems we came up with 

the optimal price of Rp 250,000 for high-WTP, Rp 

88,500 for medium-WTP, and Rp48,500 for the low-

WTP segment, with a total contribution of Rp 

2,005,484,686,201, a 50% increase compared to that 

of the two fare-class. 

 

Despite its flexibility, the model that we developed 

has some limitations. For multi-segment pricing, it 

was assumed that the segmentation was perfect 

where cannibalization and arbitrage were not pre-

sent. In the real world, perfect segmentation is 

usually difficult to achieve. In such situation, a more 

comprehensive model that incorporates those 

imperfections is needed. It was also assumed that 

the demand was deterministic, while in the real 

world that is not the case. The information needed to 

incurporate uncertainty in the pricing optimization 

model can be obtained from the output of the market 

simulation. The output of market simulation gives 

us not only information about the estimated share of 

preferences but also a standard error of those 

estimates. This information enables us to simulate 

the demand and calculate the corresponding optimal 

prices. These two issues (segmentation imperfection 

and demand uncertainty) will be the agenda for our 

future research. 
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