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Abstract: In this paper we discuss the robust counterpart (RC) methodology to handle the 

optimization under uncertainty problem as proposed by Ben-Tal and Nemirovskii. This 

optimization methodology incorporates the uncertain data in U a so-called uncertainty set and 

replaces the uncertain problem by its so-called robust counterpart. We apply the RC approach to 

uncertain Conic Optimization (CO) problems, with special attention to robust linear optimization 

(RLO) problem and include a discussion on parametric uncertainty in that case. Some new 

supported examples are presented to give a clear description of the used of  the RC methodology 

theorem. 
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Introduction 
 

The Robust Counterpart (RC) Methodology of Ben-

Tal and Nemirovskii, is one of the existing methodo-

logies for handling uncertainty in the data of an 

optimization problem. Citing from Ben-Tal [9], the 

main challenge in this RC methodology is how and 

when we can reformulate the robust counterpart of 

uncertain problems as a computationally tractable 

optimization problem or at least approximate the ro-

bust counterpart by a tractable problem. Due to its 

definition the robust counterpart highly depends on 

how we choose the uncertainty set  . As a conse-

quence we can meet this challenge only if this set is 

chosen in a suitable way. 

 

A recent comprehensive survey on the works of 

Robust Optimization (RO) is discussed by Gabrel et 

al. [21].  The survey shows that the development 

concept of RO was put forward first by Mulvey et al. 

[31] who also discuss many applications. Ben-Tal 

and Nemirovskii [5, 6, 7, 9], and in Ben-Tal et al. [11] 

applied their RC methodology to the truss topology 

design (TTD) problem (Ben-Tal and Nemirovskii [4]). 

Later, by the same authors, many good results were 

obtained for robust linear optimization problems 

Ben-Tal and Nemirovskii [6, 7], robust quadratic and 

conic quadratic optimization problems Ben-Tal and 

Nemirovskii [10] and robust semidefinite optimi-

zation problems (see in Boyd and Vandenberghe 

[16]) and also together with El Ghaoui in [20]. 
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The RC methodology was extended to a discrete 

problem by Bertsimas et al. [12], Bertsimas and Sim 

[13, 14] Bertsimas and Thiele [15], Yanes and 

Ramirez [40], Karasan et al. [26], Atamturk [2] and 

to dynamic programming by Iyengar [24]; Nilim and 

El Ghaoui [33] for Markovian decision problems. RO 

has many applications in finance, especially in ro-

bust portfolio selection problems, Costa and Nabholz 

[18], Costa and Paiva [19], Goldfarb and Iyengar 

[22], Ito [23], robust option Lutgents and Strum [28], 

robust multi-stage investment (Ben-Tal et al. [3], 

Takriti and Ahmed [39]), power system capacity 

(Malcolm and Zenios [29]), truss topology design 

(Ben-Tal and Nemirovski [5]), and supply chain 

management (Thiele [38]).  

 

In this paper, our aim in this paper is to overview 

the RC methodology in the case of uncertain conic 

optimization problems with a special focus onto un-

certain linear optimization problems. We focus more 

on a discussion of a more detail proof of a crucial 

theorem for RC methodology of Ben-Tal Nemirovskii 

in case of robust linear optimization, as can be seen 

in Ben-Tal and Nemirovski [9]. As it is mentioned 

above that the main challenge of handling uncertain 

optimization problem is to answer the question how 

and when we can reformulate the robust counterpart 

of uncertain problems as a computationally tractable 

optimization problem or at least approximate the RC 

by a tractable problem, thus the detail proof of the 

crucial theorem is important to be understood since 

in regarding to the fast development of the theory 

and application of RO, a clear understanding of the 

RC methodology  always needed. Especially for them 

who are new to the field of RO theory, this paper 

aims to give a clarification on the theorem. Some 

new supported examples are also presented to give a 

clear description of the used of  the RC methodology 

theorem. 

http://dx.doi.org/10.9744/jti.14.2.83-88
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Methods 
 

Optimization under Uncertainty: Topics, Diffi-

culties and Methodologies 

 

Optimization under uncertainty refers to the branch 

of optimization where the data vector   is uncertain. 

This means that the data vector   is not known 

exactly at the time when its solution has to be deter-

mined. The uncertainty may be due to  measure-

ment or modelling errors or simply to the unavaila-

bility of the required information at the time of the 

decision. 

 

Consider an optimization problem of the form 
 

    *  (   )   (   )           +      (1) 
 

where   (   ) denotes the objective function of the 

problem and the functions   (   ),         are 

the constraint functions. These functions depend on 

the vectors   and  , where       is the vector of 

decision variables and   stands for the data speci-

fying a particular problem instance. 

 

By way of example, in the standard linear optimiza-

tion problem 
 

    * 
           +          (2) 

 

  is the triple(     ) where      is the objective 

vector,   is the       constraint matrix and      

is the given right-hand side vector of the constraints. 

 

The classical approach in operations research or 

management science to deal with uncertainty is sto-

chastic programming (SP) (see in Ben-Tal and 

Nemirovski [7]). The uncertainty in the data of the 

problem is then modelled by a set of random varia-

bles whose distributions are assumed to be known. A 

less sophisticated approach replaces each uncertain 

component in the data vector   by a representative 

nominal value, usually the mean value, and hence in 

essence ignores the uncertainty. It is also discussed 

in Gabrel et al. [21] that there are some new develop-

ments on bridging RO and stochastic programming. 

A discussion about RO in perspective of SP is given 

by Chen et al. in [17], the discussion focus on an 

introduction of an approach for constructing 

uncertainty sets for robust optimization using new 

deviation measures for random variables termed the 

forward and backward deviations. These deviation 

measures capture distributional a asymmetry and 

lead to better approximations of chance constraints.  

 

We use a different approach, the aforementioned ro-

bust counterpart (RC) methodology of Ben-Tal and 

Nemirovskii. In this methodology, as it is mentioned 

above, it is assumed that the parameter data    
belongs to an uncertainty set  .  

Thus, an uncertain optimization problem can be 

expressed as follows: 
 

    *  (   )   (   )           +           (3) 

 

So it is in fact a whole family of optimization 

problems. One is associated with the uncertain pro-

blem (3) its so-called Robust Counterpart. In the fol-

lowing, we briefly discuss how this robust counter-

part can be obtained. Consider the uncertain pro-

blem (3).  First, we remove the uncertainty in the ob-

jective function by replacing (3) by the equivalence 

problem 
 

    *    (   )      (   )           +       (4) 

 

In the methodology of Ben-Tal and Nemirovskii one 

only considers solutions x  that are feasible for this 

problem for all possible values     (and for 

some  ). Thus, the set of all so-called Robust feasible 

solutions of (4) is given by 
 

*(   )   (   )      (   )                +  
(5) 

 

The pair (   ) denotes the column vector obtained by 

concatenating the column vectors   and  .
 

 

Now the robust counterpart of the uncertain problem 

(4) consists of minimizing  over this set:  
 

    *    (   )      (   )                 +  (6) 
 

Obviously, the robust counterpart of (4) represents a 

worst-case oriented approach: a pair of solutions 

(   ) is robust  feasible only if    satisfies the con-

straints for all possible values of    (and some  ). The 

optimal solutions of (6) are called robust optimal 

solutions. Note that the robust counterpart (6)  is an 

optimization problem with usually infinitely many 

constraints, depending on the uncertainty set  . 

This implies that this problem may be very hard to 

solve. This means that only if   is chosen suitably, 

the problem (6) can be solved efficiently. 

 

Uncertain Conic Problem  
 

In this section we discuss one of the important opti-

mization class problems, i.e, Conic optimization 

(CO). This class of problem is a very useful 

optimization technique that concerns the problem of 

minimizing a linear objective function over the 

intersection of an affine set and a convex cone. The 

importance of this class of problems is due to two 

facts, i.e., many practical nonlinear problems can be 

modeled as a CO problem, and a wide class of CO 

problems can be solved efficiently by so-called 

interior-point methods.  
 

The interest in CO was highly stimulated when it 

became clear that the interior-point methods that 
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were developed in the two last decades for Linear 

Optimization (LO) see, e.g., Jarre [25], Mehrotra 

[30], Nesterov and Nemirovskii [32], Peng et al. [34], 

Renegar [35], Roos et al. [36], Sturm and Zhang [37]) 

and which revolutionized the field of LO, could be 

naturally extended to obtain polynomial-time me-

thods for CO. The most elegant theory developed by 

Nesterov and Nemirovskii [32] provides an interior-

point method with polynomial complexity if the un-

derlying cone has a so-called self-concordant barrier 

that is computationally tractable. 

 

This opened the way to a wide spectrum of new 

applications which cannot be captured by LO, e.g., in 

image processing, finance, economics, control theory, 

combinatorial optimization, etc. For a nice survey 

both of the theory of CO and many new applications, 

we refer to the book of Ben-Tal and Nemirovskii [8]; 

Ben-Tal et al. [11].  

 

In this paper we do not touch the algorithmic aspects 

of interior-point methods for CO. We refer the inte-

rested reader to the existing literature, where one 

can find a wide variety of such methods. See, e.g., the 

above references and some numerical evidences for 

the efficiency of these methods has been provided by 

many authors (see in Andersen et al. [1], Jarre [25], 

Karasan et al. [27], Mehrotra [30], Peng et al. [34], 

Sturm and Zhang [37]). 

 

The general form of a conic optimization problem is 

as follows: 
 

       * 
           

         +       (7) 
 

where the objective function is    , with     . 

Furthermore        represents an affine function 

from    to    . Each    denotes convex cones in    , 

it is either a non-negative orthant (linear cons-

traints) or a Lorentz cone (conic quadratic cons-

traints), or a semidefinite cone (linear matrix inequa-

lities). 

 

The easiest and most well-known case occurs 

whenthe cone    is the nonnegative orthantof   , 

i.e., when      
 . Then the above problem gets the 

form 
 

       * 
            

 +               (8) 

 

This is nothing but one of the standard forms of the 

well-known LO problem. Thus it becomes clear that  

 

 

LO is a special case of CO. When the data associated 

with (7), i.e., the triple (  *     +   
 ), is uncertain 

and is only known to belong to some uncertainty 

set  , we speak about the uncertain conic problem 

which has the following form: 

   *            
         +   

(  *     +   
 )                                                            (9) 

 

The robust counterpart to (8) is the following convex 

problem 

           *   
             

    

        (  *     +   
 )    +                                   (10) 

 

This is a CO problem with usually infinitely many 

constraints, depending on the uncertainty set  . 

Hence, in general, this problem may be very hard to 

solve. In the next section, we discuss the robust 

linear optimization problem and we show that for 

special choices of the uncertainty set   the problem 

(10) is computationally tractable. 

 

Results and Discussion 
 

Robust Linear Optimization and Its Examples 
 

An uncertain linear optimization problem has the 

following form: 

    * 
       + (     )           (11) 

 

Where   is the set of all possible realizations 

of (     ), with (each) matrix    having size    . It 

is important to be mentioned here that the set of 

parameter (     )is not a random variables. The set 

  will be the representation of the uncertain (     ).  

To this end, the following discussion will give some 

explanation on it. As mentioned in the previous 

section, the first step to do the RC methodology is 

removing the uncertain from the objective function. 

This implies that the robust counterpart of (11) is the 

following semi-infinite optimization problem: 
 

      *     
           (     )   +     (12) 

 

The tractability (12) depends on the uncertainty 

set  . The following theorem makes clear that if the 

set   can be described either by linear constraints, or 

conic quadratic constraints or by a semidefinite cons-

traint, then (12) becomes computationally tractable.  

Because the following theorem is crucial for the 

paper, and since the proof in Ben-Tal and Nemi-

rovski [9] is written with less detail, we include a 

more detailed proof below. 

 

Theorem 1 (Ben-Tal and Nemirovski [9]) 

 

Assume that the uncertainty set   in (11) is given as 

the affine image of a bounded set   * +    , and 

  is given either by a system of linear inequalities  

    , or 

1. by a system of conic quadratic inequalities  

 ‖      ‖    
              or 
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2. by a  linear matrix inequality    ∑       
 
    

 where          are matrices and         are 

vectors. 

 

In the cases 2 and 3 we assume that the system of 

constraints defining   is strictly feasible. Then the 

robust counterpart (12) of (11) is equivalent to 

1. a linear optimization problem in case 1, 

2. a conic quadratic problem in case 2, 

3. a semidefinite problem in case 3. 

 

In all cases, the data of the resulting robust counter-

part problem are readily given by     equation 

reference goes here and the data specifying the 

uncertainty set. Moreover, the size of the resulting 

problem is polynomial in the size of the data 

specifying the uncertainty set. 

 

Proof: 

By assumption, the uncertainty set   has the follow-

ing form 

  

{(     ) (     )  

(        )  ∑   
 
   (        )    }                                          

(13) 
 

where (        ) is a nominal data vector,    
          and       . The feasible set of  (12) 

is 
 

  *(   )               (     )   +  (14) 
 

where with   as given by (13). This implies that the 

pair (   ) is robust feasible if and only if  

  (   ∑    
  

   )
 
  (   ∑    

  
   )    

       (   ∑    
  

   )                               (15) 

 

Now, let   be the       matrix with columns 

          Thus, the first constraint in (15) can be 

rewritten as follows.  

    (   ∑    
  

   )
 
   

       (      
       

 )                 (16) 

       (     )     
 

This equivalent to  

  .0
 
   

1  0
 
  
1  /

 

0
 
 
1                 (17) 

 

Letting   
 
 denote the i -th row of the matrix   , 

for        and        , the second constraint 

in (14) can be written as 

  (  
  ∑     

  
   )  (  

  ∑     
  

   )  

      
   (    

        
 )                                 

                (  
      

        
 )  (18) 

             
Let     denote the       matrix with columns 

  
      

   and    the column vector with entries 

  
      

 . Then the i -th inequality in (18) is 

equivalent to  

 
    

   (   )
   (  

    
  )  

    ([
 

(  
 ) ]  [

 
  
]  )

 

0
 
 
1  (  

    
  )       (19) 

 
From (17) and (19), the pair   (   )       is a 

feasible solution of the RC (12) if and only if   

satisfies  
 

,      -
   [  

     ]                        (20) 

where  

   0
 
  
1     0

 
   

1    
  ,     -          (21) 

 

and, for mi ,...,1  the following holds. 

   [
 
  
]     [

 
(  

 ) ]    
  ,  

      
 -      

   (22) 

 
This holds if and only if   is such that the optimiza-

tion problem  
 

    *(      )
   (     

  )    +         (23) 
 

has a nonnegative optimal value, for each   
     . Now, by assumption,   * +     is 

representable as 
 

  *        +                                              (24) 
 

for suitable   and  , where   is either a nonnegative 

orthant, or a direct product of the second order cones, 
or the semidefinite cone. Consequently, (  , -) can 

be written as follows: 
 

    *(  
     )

   (  
     )       +     (25) 

 

Note that this conic problem is bounded (since   is 

bounded) and   is a self-dual cone. Moreover, if the 

cone   is nonlinear, then the problem is strictly 

feasible, by the assumption for the cases 2 and 3 in 

the theorem. Therefore, the optimal value of the 

problem is equal to the optimal value of the dual 

problem, by the Strong Conic Duality in Ben-Tal and 

Nemirovskii [8], and the dual problem is solvable. 

Note that the term   
      in the objective function 

does not depend on   and hence it can be considered 

as a constant. Introducing a vector of dual varia-

bles   , the dual problem of (25) is the following conic 

problem: 
 

     { 
      

       
      

       
   } (26) 

 
Since (  , -) and (  , -) have the same optimal 

value, we may conclude that y is robust feasible if 

and only if the optimal value of (  , -) is nonnega-

tive for each  . At this stage we use that each (  , -) 
is solvable, i.e. has an optimal solution. We may 
therefore conclude that    is robust feasible for each    
there exists a vector    such that 
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          (27) 

 

We conclude from this that the robust counterpart 

(2) of (1) is equivalent to the problem  

 
   

  (   ) (  )
   

 *          
          

       
       

           +        (28) 

 

This is a linear optimization problem if the cone   is 

linear, a second-order cone problem if   is a direct 

product of second-order cone(s), and a semidefinite 

problem if the cone   is a semidefinite cone. Hence 

the proof is complete.  

 

In the next subsection, we present some new simple 

examples to illustrate the use of Theorem 1. 

 

Some Examples to Illustrate the Use of 

Theorem 1 

 

We start by considering the following uncertain 

problem: 

    *   (   )         + | |          (29) 

 

Where   is a given nonnegative number. Obviously 

the uncertainty is only in the constraint matrix, due 

to the uncertain parameter  . We derive the RC of 

this problem just by applying the method outlined in 

the proof of Theorem 1.  

 

In the current case we have 

  ,  -   [
   
 
  

]  [
 
 
  
]   [

  
 
 
]    [

  
 
  
]         (30) 

  

So we have         and    . Using the nota-

tions of (13), the set    is defined by 

  ,  -    , -    [
 
 
  
]     [

  
 
 
]   

   [
  
 
  
]     [

 
 
 
]                                         (31) 

 

In the present case the       matrix   is given 

by   . Hence we have 

   0
 
 
1     0

 
 
1     , -                   (32) 

 

The       matrices    for         are given by 

   ,  -    , -    , -                    (33) 

 

whence it follows that 

   0
 
  
1     0

 
 
1     0

 
 
1       (34) 

 

Furthermore, 

   0
 
 
1     0

 
 
1     0

 
  
1             (35) 

and since    is the zero vector, 

         , -                                      (36) 

 

Using the entries in   , 

                                                    (37) 

 

To proceed we need to find a conic representation of 

the set 

  *  | |   +                                  (38) 

 

To keep things simple we observe that this set allows 

a linear description as follows: 

  *        +  *         
 +         (39) 

where 

  0
  
 
1    0

  
  
1                                (40) 

 

We only have to substitute all the computed entities 

in (28) to obtain the robust counterpart of the given 

problem. We do this in steps. Note that since    , 

we have constraints for         and these are 

given by 

       
         

      
       

    
      (41) 

 

where   (   ). The constraints for the respective 

values of  are: 

    0
  
  
1
 
   0

 
 
1
 

0
 
 
1    0

  
 
1
 

           (42) 

    0
  
  
1
 

   0
 
 
1
 

0
 
 
1         

           0
  
 
1
 

   0
 
  
1
 

0
 
 
1                     (43) 

    0
  
  
1
 
   0

 
 
1
 

0
 
 
1    0

  
 
1
 

           (44) 

    0
  
  
1
 

   0
 
  
1
 

0
 
 
1          

           0
  
 
1
 

                                     (45) 

 

In other words, 

      (  
    

 )           
    

          (46) 
      (  

    
 )          

              
    

                           (47) 

      (  
    

 )        
              

    
                              (48) 

      (  
    

 )          
             

    
                            (49) 

 

Yet we observe that only the variable   appears in 

the objective function of (27). Since      the con-

straints for     can be satisfied if and only 

if      .  
 

Similarly, the constraints for     can be satisfied if 

and only if     and those for     if and only if 

     . Replacing   
  by   and    

  by  , we get the 

following equivalent system of constraints: 
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                                                                (50) 
      (   )                  
                                                               (51) 

                                                                 (52) 

                                                            (53) 

 

We can also simplify the constraints for    . Note 

that      is automatically nonnegative, since 

  and   are nonnegative. So the constraint     is 

redundant. Hence, by eliminating   we get the 

equivalent system 

 

  (    )                       (54) 

or, equivalently, 
(   )                                   (55) 

 

Using again that  is nonnegative we see that if the 

first inequality is satisfied for some nonnegative   

then it is also also satisfied for    . Hence the 

constraints for     may be replaced by the single 

constraint(   )    . Thus we obtain the follow-

ing RC of the given problem: 

 

      *             (   )   +         (56) 

 

By eliminating the variable   we get the following 

problem, which has the same optimal value, denoted 

as    ( ). 
   ( )        *         (   )   +     (57) 

 

Note that if     is feasible, then it is the optimal 

solution. This happens for    . If     then the 

largest possible value for   is  (   )⁄ . Hence we 

have  

   ( )  {
              

 
 

   
        

                    (58) 

 

The graph of    ( ) is as shown in Figure 1.  

 

Note that    ( ) depends continuously on the 

parameter  . As we will see in the next example this 

is not always the case.  The reader may have noticed 

that the RC in the above simple example could have 

been obtained much easier by noting that the `worst' 

value of   in (28) occurs when    . This immediate-

ly yields the RC of (29).  

 

In the next example we derive the RC in this more 

direct way. The aim of the above example, however, 

was to demonstrate how the RC of a problem that 

satisfies the hypothesis of Theorem 1 can be ob-

tained in a straightforward way by using the scheme 

presented in the proof of Theorem 1. 

 

Example 2 

For    , consider the uncertain problem:  

    2   (   )    
 

 
    3  | |         (59) 

 

Figure 1.The robust optimal value function of    ( )of 

Example 1. 

 

 
Figure 2. The robust optimal value function of    ( )of 

Example 2. 

 
As in the previous example the `worst' value of   
occurs when    . Hence, the RC is given by 

    2   (   )    
 

 
    3     (60) 

 
As in the first example,     is feasible if     and 

then this is the robust optimal solution. If      

then the first constraint becomes  

  
 

   
                                                           (61) 

 

which makes clear that the problem is infeasible if 
   . Hence we have  

   ( )  {

                        

 
 

   
          

                               

           (62) 

 

See also Figure 2.  
 

Conclusion 
 

From the discussion above, we may conclude the 

paper by claiming that RC methodology can be em-

ploy to obtain the robust optimal solution of un-
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certain CO as long as the RC formulation can be 

represented in CO formulation wheather it is a li-

near, conic quadratic or semidefininte optimization. 

From the discussed examples, it can be conclude that 

the optimal value of RC which is denotes as    ( )  
is not always depends continuously on the parame-

ter  . 
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