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ABSTRACT 
 

Many business and economic time series are non-stationary time series that contain trend and seasonal 
variations. Seasonality is a periodic and recurrent pattern caused by factors such as weather, holidays, or 
repeating promotions. A stochastic trend is often accompanied with the seasonal variations and can have a 
significant impact on various forecasting methods. In this paper, we will investigate and compare some 
forecasting methods for modeling time series with both trend and seasonal patterns. These methods are 
Winter’s, Decomposition, Time Series Regression, ARIMA and Neural Networks models. In this empirical 
research, we study on the effectiveness of the forecasting performance, particularly to answer whether a 
complex method always give a better forecast than a simpler method. We use a real data, that is airline 
passenger data. The result shows that the more complex model does not always yield a better result than a 
simpler one. Additionally, we also find the possibility to do further research especially the use of hybrid 
model by combining some forecasting method to get better forecast, for example combination between 
decomposition (as data preprocessing) and neural network model. 
 
Keywords:  Trend, seasonality, time series, Neural Networks, ARIMA, Decomposition, Winter’s, hybrid 

model.  
 

 
1. INTRODUCTION 

 
There are two basic considerations in producing an accurate and useful forecast. The first is 

to collect data that are relevant to the forecasting task and contain the information that can yield 
accurate forecast. The second key factor is to choose a forecasting technique that will utilize the 
information contained in the data and its pattern to the fulfilled.  

Many business and economic time series are non-stationary time series that contain trend 
and seasonal variations. The trend is the long-term component that represents the growth or 
decline in the time series over an extended period of time. Seasonality is a periodic and recurrent 
pattern caused by factors such as weather, holidays, or repeating promotions. Accurate 
forecasting of trend and seasonal time series is very important for effective decisions in retail, 
marketing, production, inventory control, personnel, and many other business sectors 
(Makridakis and Wheelwright, 1987). Thus, how to model and forecast trend and seasonal time 
series has long been a major research topic that has significant practical implications. 

There are some forecasting techniques that usually used to forecast data time series with 
trend and seasonality, including additive and multiplicative methods. Those methods are Winter’s 
exponential smoothing, Decomposition, Time series regression, and ARIMA models (Bowerman 
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and O’Connell, 1993; Hanke and Reitsch, 1995). Recently, Neural Networks (NN) models are 
also used for time series forecasting (see, for example, Hill et al., 1996; Faraway and Chatfield, 
1998; Kaashoek and Van Dijk, 2001). 

The purpose of this paper is to compare some forecasting models and to examine the issue 
whether a more complex model work more effectively in modeling and forecasting a trend and 
seasonal time series than a simpler model. In this research, NN model represents a more complex 
model, and other models (Winter’s, Decomposition, Time Series Regression and ARIMA) as a 
simpler model.  
 
 
2. MODELING TREND AND SEASONAL TIME SERIES    

 
Modeling trend and seasonal time series has been one of the main research endeavors for 

decades. In the early 1920s, the decomposition model along with seasonal adjustment was the 
major research focus due to Persons (1919, 1923) work on decomposing a seasonal time series. 
Holt (1957) and Winters (1960) developed method for forecasting trend and seasonal time series 
based on the weighted exponential smoothing. Among them, the work by Box and Jenkins 
(1976) on the seasonal ARIMA model has had a major impact on the practical applications to 
seasonal time series modeling. This model has performed well in many real world applications 
and is still one of the most widely used seasonal forecasting methods. More recently, NN have 
been widely used as a powerful alternative to traditional time series modeling (Zhang et al., 1998; 
Nelson et al., 1999; Hansen and Nelson, 2003). While their ability to model complex functional 
patterns in the data has been tested, their capability for modeling seasonal time series is not 
systematically investigated. 

In this section, we will give a brief review of these forecasting models that usually used for 
forecasting a trend and seasonal time series.  
 
2.1. Winter’s Exponential Smoothing 

Exponential smoothing is a procedure for continually revising an estimate in the light of 
more recent experiences. Winter’s model is exponential smoothing model that usually used for 
forecasting trend and seasonal time series. The four equations used in Winter’s model are as 
follows (see Hanke and Reistch, 1995; page 172-173): 
(i)  The exponentially smoothed series: 

 1 1(1 )( )t
t t t

t L

yA A T
S

α α − −
−

= + − +  (1) 

(ii) The trend estimate: 
 1 1( ) (1 )t t t tT A A Tβ β− −= − + −  (2) 
(iii) The seasonality estimate: 

 (1 )t
t t L

t

yS S
A

γ γ −= + −  (3) 

(iv). Forecast  p periods into the future: 
 ˆ ( )t p t t t L py A pT S+ − += +  (4) 
where  
α = smoothing constant (0 1)α< <  
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β = smoothing constant for trend estimate (0 1)β< <  
γ  = smoothing constant for seasonality estimate (0 1)γ< <  
L = length of seasonality.  
 
2.2.  Decomposition Method 

In this section we present the multiplicative decomposition model. This model has been 
found to be useful when modeling time series that display increasing or decreasing seasonal 
variation (see Bowerman and O’Connell, 1993; chapter 7). The key assumption inherent in this 
model is that seasonality can be separated from other components of the series. The 
multiplicative decomposition model is 

t t t t ty T S C I= × × ×  (5) 
where  
yt  = the observed value of the time series in time period t 
Tt = the trend component in time period t 
St = the seasonal component in time period t 
Ct  = the cyclical component in time period t 
It  = the irregular component in time period t. 

 
2.3.  Time Series Regression 

Time series regression models relate the dependent variable ty  to functions of time. These 
models are most profitably used when the parameters describing the time series to be forecast 
remain constant over time. For example, if a time series exhibits a linear trend, then the slope of 
the trend line remains constant. As another example, if the time series can be described by using 
monthly seasonal parameters, then the seasonal parameters for each of the twelve months remain 
the same from one year to the next. The time series regression model considered in this paper is 
(Bowerman and O’Connell, 1993; chapter 6): 

t t t ty T S ε= + + , (6) 
where  
yt  = the observed value of the time series in time period t 
Tt  = the trend in time period t 
St  = the seasonal factor in time period t 
εt  = the error term in time period t. 
In this model, the seasonal factor is modeled by employing dummy variables. 

 
2.4. Seasonal ARIMA Model 

The seasonal ARIMA model belongs to a family of flexible linear time series models that 
can be used to model many different types of seasonal as well as nonseasonal time series. The 
seasonal ARIMA model can be expressed as (Cryer, 1986; Wei, 1990; Box et al., 1994):  

( ) ( )(1 ) (1 ) ( ) ( )S d S D S
p P t q Q tB B B B y B Bφ θ εΦ − − = Θ  , (7) 

with 
( )p Bφ  = 2

1 21 p
pB B Bφ φ φ− − − −…  

( )S
P BΦ  = 2

1 21 S S PS
PB B B−Φ −Φ − −Φ…  
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( )q Bθ  = 2
1 21 q

qB B Bθ θ θ− − − −…  

( )S
Q BΘ  = 2

1 21 S S QS
QB B B−Θ −Θ − −Θ… , 

where S is the seasonal length, B is the back shift operator and εt is a sequence of white noises 
with zero mean and constant variance. Box and Jenkins (1976) proposed a set of effective model 
building strategies for seasonal ARIMA based on the autocorrelation structures in a time series. 

 
2.5. Neural Networks Model 

Neural networks (NN) are a class of flexible nonlinear models that can discover patterns 
adaptively from the data. Theoretically, it has been shown that given an appropriate number of 
nonlinear processing units, NN can learn from experience and estimate any complex functional 
relationship with high accuracy. Empirically, numerous successful applications have established 
their role for pattern recognition and time series forecasting.  

Feedforward Neural Networks (FFNN) is the most popular NN models for time series 
forecasting applications. Figure 1 shows a typical three-layer FFNN used for forecasting 
purposes. The input nodes are the previous lagged observations, while the output provides the 
forecast for the future values. Hidden nodes with appropriate nonlinear transfer functions are used 
to process the information received by the input nodes. 
 

 
Figure 1.  Architecture of Neural Network Model With Single Hidden Layer  

 
The model of FFNN on Figure 1 can be written as  

0
1 1

q p

t j ij t i oj t
j i

y f yβ β γ γ ε−
= =

 
= + + + 

 
∑ ∑ , (8) 

where p is the number of input nodes, q is the number of hidden nodes, f is a sigmoid transfer 
function such as the logistic:  
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1( )
1 xf x

e−=
+

’ (9) 

{ , 0,1, , }j j qβ =  is a vector of weights from the hidden to output nodes and 

{ , 0,1, , ; 1,2, , }ij i p j qγ = =  are weights from the input to hidden nodes. Note that equation 
(8) indicates a linear transfer function is employed in the output node. 

Functionally, the FFNN expressed in equation (8) is equivalent to a nonlinear AR model. 
This simple structure of the network model has been shown to be capable of approximating 
arbitrary function (Cybenko, 1989; Hornik et al., 1989, 1990; White, 1990). However, few 
practical guidelines exist for building a FFNN for a time series, particularly the specification of 
FFNN architecture in terms of the number of input and hidden nodes is not an easy task. 
 
 
3. RESEARCH METHODOLOGY    
 

The aim of this research is to provide empirical evidence on the comparative study of many 
forecasting models for modeling and forecasting trend and seasonal time series. The major 
research questions we investigate is: 
 Does the more complex model (FFNN) always yield a better forecast than the simpler model 

on forecasting trend and seasonal time series? 
 Is it possible to create hybrid model that combining some existing forecasting model for trend 

and seasonal time series? 

To address these, we conduct empirical study with real data, the international airline 
passenger data. This data has been analyzed by many researchers, see for example Nam and 
Schaefer (1995), Hill et al. (1996), Faraway and Chatfield (1998), Atok and Suhartono (2000) 
and now become one of two data to be competed in Neural Network Forecasting Competition on 
June 2005 (see www.neural-forecasting.com).  
 
3.1.  Data 

The international airline passenger data contain 144 month observations, started in January 
1949 and ended in December 1960. The first 120 data observations are used for model selection 
and parameter estimation (training data in term of NN model) and the last 24 points are reserved 
as the test for forecasting evaluation and comparison (testing data). Figure 2 plots representative 
time series of this data. It is clear that the series has an upward trend together with seasonal 
variations. 
 
3.2.  Research Design 

Five types of forecasting trend and seasonal time series are applied and compared to the 
airline data. Data preprocessing (transformation and differencing) is a standard requirement and 
is built in the Box-Jenkins methodology for ARIMA modeling. Through the iterative model 
building process of identification, estimation, and diagnostic checking, the final selected ARIMA 
model bases on the in-sample data (training data) is believed to be the best for testing sample 
(Fildes and Makridakis, 1995). In this study, we use MINITAB to conduct Winters, 
Decomposition, Time Series Regression and ARIMA model building and evaluation. The 
Winter’s model building is done iteratively by employing several combination of α, β and γ. 
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Specifically, Time Series Regression model building use logarithm transformation as data 
preprocessing to make seasonal variation become constant. 

 

 
 

Figure 2. Time Series Plot of the International Airline Passenger Data  
 

To determine the best FFNN architecture, an experiment is conducted with the basic cross 
validation method. The available training data is used to estimate the weights for any specific 
model architecture. The testing set is the used to select the best model among all models 
considered. In this study, the number of hidden nodes varies from 1 to 10 with an increment of 1. 
The lags of 1, 12 and 13 are included due to the results of Faraway and Chatfield (1998) and 
Atok and Suhartono (2000). 

The FFNN model used in this empirical study is the standard FFNN with single-hidden-
layer shown in Figure 1. We use S-Plus to conduct FFNN model building and evaluation. The 
initial value is set to random with 50 replications in each model to increase the chance of getting 
the global minimum. We also use data preprocessing by transform data to [-1,1] scale. The 
performance of in-sample fit and out-sample forecast is judged by three commonly used error 
measures. They are the mean squared error (MSE), the mean absolute error (MAE), and the 
mean absolute percentage error (MAPE). 

 
 

4. EMPIRICAL RESULTS 
 

Table 1 summarizes the result of some forecasting models and reports performance 
measures across training and testing samples for the airline data. Several observations can be 
made from this table. First, decomposition method is a simple and useful model that yields a 
greater error measures than Winter’s, Time Series Regression and ARIMA model particularly in 
training data. On the other hand, this model gives a better (less) error measures in testing samples. 
Second, there are four ARIMA models that satisfied all criteria of good model and we present 

Testing data 

Training data 
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two best of them on table 1. We can observe that the best ARIMA model in training set (model 1, 
ARIMA[0,1,1][0,1,1]12) yields worse forecast accuracy in testing samples than the second best 
ARIMA model (model 2, ARIMA[1,1,0][0,1,1]12). This result is exactly the same with Winter’s 
model, that is model 1 (α = 0.9, β =0.1 and γ =0.3) gives better forecast in training but worse 
result in testing than model 2 (α  = 0.1, β  =0.2 and γ =0.4). 

 
Table 1. The Result of the Comparison Between Forecasting Models, Both in Training and 

Testing Data 
IN-SAMPLE (TRAINING DATA) OUT-SAMPLE (TESTING DATA)  

Model  MSE MAE MAPE MSE MAE MAPE 
 
 Winter’s (*) 

   a. Model 1 
   b. Model 2 
 
 Decomposition (*) 

 
 Time Series  

   Regression (*) 

 
 ARIMA 

   a. Model 1 
   b. Model 2 
 
 FFNN 

   a. Model 1 
   b. Model 2 
   c. Model 3 

 
 

97.7342 
146.8580 

 
215.4570 

 
 

198.1560 
 
 

88.6444 
88.8618 

 
 

93.14681 
85.84615 
70.17215 

 
 

7.30200 
9.40560 

 
11.47000 

 
 

10.21260 
 
 

7.38689 
7.33226 

 
 

7.63076 
7.36952 
6.60960 

 
 

3.18330 
4.05600 

 
5.05900 

 
 

4.13781 
 
 

2.95393 
2.92610 

 
 

3.17391 
3.10043 
2.79787 

 
 

12096.80 
3447.82 

 
1354.88 

 
 

2196.87 
 
 

1693.68 
1527.03 

 
 

1282.31 
299713.20 
11216.48 

 
 

101.5010 
52.1094 

 
29.9744 

 
 

42.9710 
 
 

37.4012 
35.3060 

 
 

32.6227 
406.9918 
62.9880 

 
 

21.7838 
11.4550 

 
6.1753 

 
 

9.9431 
 
 

8.0342 
7.5795 

 
 

7.2916 
88.4106 
12.3835 

(*): error model is not white noise 
 

Third, the results of FFNN model have a similar trend. The more complex of FFNN 
architecture (it means the more number of unit nodes in hidden layer) always yields better result 
in training data, but the opposite result happened in testing sample. FFNN model 1, 2 and 3 
respectively represent the number of unit nodes in hidden layer. We can clearly see that the more 
complex of FFNN model tends to overfitting the data in the training and due to have poor 
forecast in testing.  

Finally, we also do diagnostic check in term of statistical modeling for each data to know 
especially whether the error model is white noise. From table 1 we know that Winter’s, 
Decomposition and Time series regression model do not yield the white noise errors. Only errors 
of ARIMA and FFNN models satisfied this condition. It means that modeling process of 
Winter’s, Decomposition and Time series regression are not finished and we can continue to 
model the errors by using other method. This condition give a chance to do further research by 
combining some forecasting method for trend and seasonal time series, for example combination 
between Time series regression and ARIMA (also known as combination deterministic-
stochastic trend model), between Decomposition (as data preprocessing to make stationary data) 
and ARIMA, and also between Decomposition (as data preprocessing) and FFNN model. 

In general, we can see on the testing samples comparison that FFNN with 1 unit node in 
hidden layer yields the best MSE, whereas Decomposition yields the best MAE and MAPE. 
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5.  CONCLUSIONS 

Based on the results we can conclude that the more complex model does not always yield 
better forecast than the simpler one, especially on the testing samples. Our result only shows that 
the more complex FFNN model always yields better forecast in training data and it indicates an 
overfitting problem. Hence, the parsimonious FFNN model should be used in modeling and 
forecasting trend and seasonal time series.  

Additionally, the results of this research also yield a chance to do further research on 
forecasting trend and seasonal time series by combining some forecasting methods, especially 
decomposition method as data preprocessing in NN model. 
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