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Abstract: The double row layout problem (DRLP) is an NP-hard and has many applications in 

the industry. The isuue concerns arranging the position of 𝒏 machines on the two rows so that the 

material handling cost is minimized. Although several mathematical programming models and 

local heuristics have been previously proposed, there is still a requirement to develop an approach 

that can solve the problem efficiently. Here, a genetic algorithm is proposed, which is aimed to 

solve the DRLP in a reasonable and applicable time. The performances of the proposed method, 

both its obtained objective values and computational time, are evaluated by comparing it with the 

existing mathematical programming model. The results demonstrate that the proposed GA can 

find relatively high-quality solutions in a much shorter time than the mathematical programming 

model, especially in the problem with a large number of machines. 
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Introduction 
 

Facility layout planning is a complex manufacturing 

environment that optimizes space usage and machine 

layout configuration. It is an essential task required 

to operate the production and service systems effi-

ciently, since a well-designed facility layout could 

reduce many forms of waste, such as excessive 

motion, waiting time, and material handling. In this 

regard, it is observed by Mohamadghasemi and 

Vencheh [1] that 20-50% of total operating cost is 

contributed by the cost of material handling, which 

implies the significance of facility layout planning 

tasks. 

 
Material handling cost is essential as it is the main 

cost involved in designing and operating a material 

handling system. The cost consists of freight, insuran-

ce, customs clearance, and so on. An effective space 

usage requires low material handling costs, and these 

costs may be reduced by determining product flows 

via optimizing and minimizing adjacent machines' 

clearance. In the machine layout, there should be a 

clearance or minimum separation distance required 

between the machines. The clearance may vary 

between the machines, depending on the sequence. 

However, in the practical problems, the clearance is 

subject to the machine, such as the length of the 

machine and function. Therefore, it is crucial to put a 

similar machine close to each other for the 

maintenance. 
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If the clearances between machines are not equal to 

each distance, it will affect the clearances values and 

difficulty finding the exact location. 

 

This DRLP is the problem of allocating a given set of 

machines on both sides of a straight-line corridor to 

minimize the total cost of transporting materials 

among machines. It is different from Single Row 

Facility Layout Problem (SRFLP) which concerns the 

facilities' arrangement on a single row (Amaral [2]) 

where all the machines are placed at the same side of 

the corridor. The DRLP aims to determine the 

machine locations in the two rows. The objective 

function is the total flow cost while ensuring that 

there will be no overlaps of machines. The objective is 

subject to some constraints, such as the width of the 

machines and the number of products processed by 

each machine. 

 

Several approaches have been developed to solve the 

DRLP. Amaral [3] formulated a mixed-integer pro-

gramming (MIP) where the constraint sets are a non-

overlapping set of machine and distance measuring 

constraints set between pairs of machines in the row. 

For measuring the constraints set in different rows, 

MIP assigns the variables to specify the machine 

locations whether it will be placed on the upper or 

lower row. The proposed MIP was then compared 

with previous models by Chung and Tanchoco [4] and 

Amaral [5]. Further, Secchin and Amaral [6] updated 

the MIP model for more efficient computation. 

  

As indicated by previous research, the use of 

mathematical programming is limited as it is not 

suitable for large datasets. Besides, it generally 

requires long computation time even for small and 

medium sizes of instances. Meanwhile, the previously 
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developed heuristic methods were mainly based on 

the combination of local heuristics with linear 

programming (Murray et al. [7]; Zuo et al. [8]; Wang 

[9]; Amaral [10]). Although these methods can reduce 

the computation time significantly, the involvement 

of LP limits its efficiency. Due to this issue, the use of 

a metaheuristic is expected to provide reasonably 

good solutions in short computation time. Therefore, 

we propose the use of a genetic algorithm (GA) to 

produce solutions and find the near-optimal solution. 

The GA approach aims to optimize the machine 

arrangement with shorter computation times, which 

then enables the solving of the DRLP with a large 

number of machines. The studies on the DLRP is still 

on infancy, and to the best of our knowledge, most 

studies applied the combination of heuristics and 

mathematical programming. Therefore, this study is 

the first to consider a Genetic Algorithm to solve the 

DRLP. 

 

Methods 
 

Problem Formulation 

 

This section explains the model for DRLP as outlined 

by Amaral [10]. Several assumptions holds true in 

this model: (i) The corridor width is negligible and 

only distance along the 𝑥-axis is considered, (ii) The 

loading/unloading point is at the center of each 

machine, (iii) The clearance are included in the length 

of the machines, and (iv) The product flows follow 

symmetric matrices. The simple illustration of double 

row layout with 7 machines is presented in Figure 1. 

 

There are 𝑛 machines to be arranged to form the 

double row layout. Each machine has a distinct length 

𝑙𝑖, 𝑖 ∈  𝑁 where 𝑁 = {1 , … , 𝑛} is the set of machines. 

As mentioned in the assumption (iii), the length of 

machines includes the required minimum clearance 

between two machines. Thus, the actual length of the 

machines is lower than the listed length for the 

computation. There are several materials to be 

processed by the machines in which each product may 

require a different subset of machines to process. 

Subsequently, the materials must be transported 

between one machine to another required machine 

until finishing all processes.  

 

Borrowing the description of Amaral [3], the 

mathematical formulation of DRLP can be presented 

as a mixed-integer linear programming model. There 

are two binary decision variables required. 
𝑡𝑖𝑗 is a binary variable which takes the value of 1 if 

machine 𝑗 is located to the right of machine 𝑖, and 0 

otherwise. This decision variable is employed to avoid 

any overlap between machines located in the same 

row. 

 

Figure 1. Feasible double row layout with seven machines 
 

Then, 𝑢𝑖𝑗 is a binary variable to indicate the row of a 

given machine, it takes the value of 1 if machine 𝑖 and 

machine 𝑗 are placed at the same row, and 0 

otherwise. Finally, using the sets, notations, and 

parameters from Table 1, the formulation can be 

drawn as below. The objective function is minimizing 

the material handling cost 𝑓. To simplify the problem, 

only the operating cost of material handling is 

considered. Meanwhile, the cost of product damage 

and maintenance is not examined since the material 

handling system mainly causes it, thus not relevant 

for the layout planning problem. Besides, the 

equipment and unit purchase costs are omitted as it 

is assumed that there is no change in material 

handling equipment. 

 
Table 1. Description of sets, notations, and parameters 

Symbol Description 

𝑛 number of available machines 
𝑁 set of machines, {1, … , 𝑛} 
𝑙𝑖 length of machine 
𝐿 sum of the length of all machines, 𝐿 = ∑ 𝑙𝑖𝑖∈𝑁  

𝑥𝑖 abscissa or horizontal location of the center of 

machine 𝑖 
𝑐𝑖𝑗 material flow between machines 𝑖 and 𝑗 

𝑑𝑖𝑗 distance between the centers of machine 𝑖 and 

machine 𝑗 
 

Objective function: 

min 𝑓 = ∑ ∑ 𝑐𝑖𝑗𝑑𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                         (1) 

Subject to: 

𝑑𝑖𝑗 ≥ 𝑥𝑖 − 𝑥𝑗                                                                               (2) 

𝑑𝑖𝑗 ≥ 𝑥𝑗 − 𝑥𝑖                                                                                (3) 

𝑥𝑗 + (
𝑙𝑖+𝑙𝑗

2
) ≤ 𝑥𝑖 + 𝐿(1 + 𝑡𝑖𝑗 − 𝑢𝑖𝑗)                                     (4) 

𝑥𝑖 + (
𝑙𝑖+𝑙𝑗

2
) ≤ 𝑥𝑗 + 𝐿(2 − 𝑡𝑖𝑗 − 𝑢𝑖𝑗)                                     (5) 

𝑑𝑖𝑗 ≥ (
𝑙𝑖+𝑙𝑗

2
) 𝑢𝑖𝑗                                                                 (6) 

 

The equations (2)-(6) are applied for every  

 𝑖 ∈ 𝑁\{𝑗}, 𝑗 ∈ 𝑁\{𝑖}, 𝑖 < 𝑗  

 𝑑𝑖𝑗 − 𝑑𝑗𝑘 − 𝑑𝑖𝑘 ≤ 0                                                                   (7) 

−𝑑𝑖𝑗 + 𝑑𝑗𝑘 − 𝑑𝑖𝑘 ≤ 0                                                                  (8) 

−𝑑𝑖𝑗 − 𝑑𝑗𝑘 + 𝑑𝑖𝑘 ≤ 0                                                      (9) 

𝑢𝑖𝑗 + 𝑢𝑗𝑘 + 𝑢𝑖𝑘 ≥ 1                                                                  (10) 

−𝑢𝑖𝑗 + 𝑢𝑗𝑘 + 𝑢𝑖𝑘 ≤ 1                                                                 (11) 

𝑢𝑖𝑗 − 𝑢𝑗𝑘 + 𝑢𝑖𝑘 ≤ 1                                                                    (12) 

𝑢𝑖𝑗 + 𝑢𝑗𝑘 − 𝑢𝑖𝑘 ≤ 1                                                                   (13) 
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The equations (7)-(13) are applied for every 
𝑖 ∈ 𝑁\{𝑗, 𝑘}, 𝑗 ∈ 𝑁{𝑖, 𝑘}, 𝑘 ∈ 𝑁\{𝑖, 𝑗}, 𝑖 < 𝑗 < 𝑘  
 

𝑙𝑖

2
≤ 𝑥𝑖 ≤ 𝐿 −

𝑙𝑖

2
;  ∀ 𝑖 ∈ 𝑁                                             (14) 

𝑥𝑖∗ ≤ 𝑥𝑗∗                                                                        (15) 

𝑖∗ =  
arg 𝑚𝑎𝑥
𝑖 ∈ 𝑁\{𝑗}{∑ 𝑐𝑖𝑗𝑗∈𝑁\{𝑖} }                                       (16) 

𝑗∗ =  
arg 𝑚𝑖𝑛

𝑗 ∈ 𝑁\{𝑖∗}
{𝑐𝑖∗,𝑗}                                                  (17) 

𝑡𝑖𝑗 , 𝑢𝑖𝑗 ∈ [0,1]; ∀ 𝑖 ∈ 𝑁\{𝑗}, 𝑗 ∈ 𝑁\{𝑖}, 𝑖 < 𝑗             (18)                       

 

The objective function (1) is to minimize the material 

handling cost 𝑓 among all machines in the layout, 

which is calculated by the product of the material flow 

and the distance between machines. Here, the dis-

tance is calculated between the centers of the ma-

chines. This objective is subjected to a set of con-

straints. Equations (2) and (3) calculate the distance 

between machines. Equations (4) and (5) prevent the 

overlap between machines if these machines are 

located at the same row. Equations (6) gives the lower 

bound value for the distance variables 𝑑𝑖𝑗. Equations 

(7), (8), and (9) are the valid inequalities on distance 

variables 𝑑𝑖𝑗. Similarly, Equations (10), (11), (12), and 

(13) are the valid inequalities on the variables to 

control the positional row of a given machine. 

Equations (14) provides the bounds to the value of 

abscissa location. Equation (15) is the symmetry-

breaking constraint. Within each case of the DRLP, 

there are two symmetric optimal solutions since it 

does not matter at which machine the process is 

initially started. Thus, this equation is aimed to 

eliminate one of the symmetric solutions by stating 

that 𝑥𝑖∗ ≤ 𝑥𝑗∗, where 𝑖∗ corresponds to a machine with 

the largest total flow to the other machines and 𝑗∗ 

corresponds to a machine with the least flow to the 𝑖∗. 

The calculations of 𝑖∗ and 𝑗∗ are presented in Equa-

tion (16) and Equation (17). Last, Equation (18) limits 

the decision variables 𝑡𝑖𝑗 and 𝑢𝑖𝑗 to a binary value. 

 

Genetic Algorithm Design 
 

This section describes the detail of genetic algorithm 

(GA) designed to solve the DRLP problem. The GA is 

a stochastic search technique that mimics the 

mechanisms of Darwinian evolution based on the 

concept of the survival of the fittest (Deb [11]; 

Goldberg [12]). The previous application of GA 

indicates its favorable performance in manufacturing 

system optimization, such as for FMS scheduling 

problem in loop layout (Rifai et al. [13]), layout 

planning in SRLP (Datta et al. [14]), and unequal area 

production facilities planning (Hou et al. [15]). GA 

uses a selection operator that is created by a random 

number and selection probability calculated by the 

objective values of chromosomes in the population, 

and a mating pool is created with the selected 

chromosomes from the original population. 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 
        

Row 1 2 1 1 2 2 1 

Machine 

Index 
3 1 1 4 3 2 2 

Figure 2. Solution representation 

 

Crossovers are induced by random numbers for pairs 

of chromosomes in the pool, and then chromosomes 

are repaired if necessary. A mutation creates an 

exchange of locations in a chromosome and it is also 

triggered based on a random number.  
 

It begins with a set of random individuals, referred to 

as a population, which is evolved over iterations by 

some repeated applications of some genetic operators, 

such as selection, crossover, and mutation. The most 

crucial component of a GA is the solution representta-

tion, popularly known as the chromosome or 

individual which represents a complete solution of a 

problem. Here, we use two-rows representation. The 

first row represents the layout row and the second 

presents the machine index. Figure. 1 presents an 

example of solution representation for 𝑛 = 7. 
 

Figure. 2 presents an example of solution representa-

tion for 𝑛 = 7. Thus, for example, machine 1 is placed 

on the first row, and positioned at the 3rd sequence 

from the starting point after machine 3 and machine 

7. This type of representation allows the GA operators 

to modify either the row of machine or the position of 

the machine inside the row. Therefore, it can balance 

the exploration and exploitation of the search space. 
 

The proposed GA creates an initial population 

randomly and evaluates the chromosome, then the 

population is sorted based on the objective values. We 

decide the constraints as material flow costs, the 

width of the machines, and processed material per 

machine. The objective function is the total flow cost 

while ensuring that there will be no overlaps of 

machines. The concept of the selection is emphasizing 

good individuals and eliminates the weak ones by 

forming a temporary population, known as the 

mating pool. The mating pool consists of the selected 

chromosomes from the original population. Then, 

crossover is performed on the selected parents and 

generated offspring are evaluated. 
 

In this case, we adopt the one-point crossover. One-

point crossover works by selecting single point 

fragmentation in the parent chromosomes and 

combines the parent genes to create an offspring. The 

two parents are selected from the population by using 

roulette wheel selection. Two offspring are created by 

combining the parent genes at a crossover point. In 

this study, the one-point crossover requires two 

phases in order to create the offspring. 
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First, the type of solution modification is determined, 

either exchanging the genes for machine index, row, 

or both of them. Second, the crossover point is selected 

randomly using uniform distribution 𝐶𝑃 = 𝑈(1, 𝑛 −
1). Afterward, the genes of the two parents after the 

crossover point are exchanged to form new offspring. 

Figure. 3 presents the procedures for one-point 

crossover for this study. 
 

After creating the new offspring, the proposed GA will 

select the newly generated solutions in order to apply 

the mutation method. Mutation is used to find the 

global optimum derived from the randomly chosen 

children with another predefined probability, known 

as mutation probability. It applies low mutation 

probability and then swaps the values of the two 

elements of the child individual. Swap mutation 

selects the two parents randomly and swaps their 

positions. The genes can be the same or different 

routes.  For instance, consider the following chromo-

some in Figure. 2. If positions 3 and 6 are selected, 

then the machine 3 and machine 6 would interchange 

their gene values. Similar to the crossover operators, 

the exchanging values may involve only the row, the 

machine index, or both information. Then the 

mutated chromosome will be depicted in Figure 4. 
 

The need for mutation comes from the fact that the 

loss of successive generations could discard good 

genetic material forever. By performing occasional 

random changes in the chromosomes, GA ensures 

that new parts of the search space are reached, which 

selection and crossover alone could not fully 

guarantee. By doing so, swap mutation ensures that 

no important features are prematurely lost, thus 

maintaining the mating pool diversity. Since the 

solutions represented using the two-rows representa-

tion, the layout row and the machine index, the 

crossover and mutation operators are tailored to 

accommodate this representation. The mechanism for 

both operators is developed by considering the need to 

balance between the exploration and exploitation of 

our proposed GA algorithm in searching for a global 

optimum solution. 

 

The crossover and mutation operators can modify the 

solution either by transferring the selected machines 

into other rows for exploration of the search space or 

changing the machine index only (the machine is still 

positioned in the same row) for exploitation of pro-

mising neighborhood. After the crossover and muta-

tion, the newly generated solutions are adjusted to 

ensure no constraints are violated. The adjustment is 

performed by prohibiting the machines in the same 

row to have the same index. In such case, one of the 

redundant indices is simply changed to the new index. 

After the solution adjustment process, the best solu-

tion among chromosomes is recorded. The procedure 

of the proposed GA is depicted in the Algorithm 1. 

    Solution 1  Solution 2 

(a) Row exchange only Parents Row  1 2 1 1 2 2 1  2 2 1 1 1 1 2 

 Machine index  3 1 1 4 3 2 2  1 2 3 4 2 1 2 

Offspring Row  1 2 1 1 1 1 2   2 2 1 1 2 2 1 

 Machine index  1 1 5 4 3 2 2  3 4 3 1 2 1 2 
       

(b) Machine index exchange 

only 

Parents Row  1 2 1 1 2 2 1  2 2 1 1 1 1 2 

 Machine index  3 1 1 4 3 2 2  1 2 3 4 2 1 2 

Offspring Row  1 2 1 1 2 2 1  2 2 1 1 1 1 2 

 Machine index  3 3 1 4 2 1 2  1 3 2 4 3 2 2 
       

(c) Row and machine index 

exchange  

Parents Row  1 2 1 1 2 2 1  2 2 1 1 1 1 2 

 Machine index  3 1 1 4 3 2 2  1 2 3 4 2 1 2 

Offspring Row  1 2 1 1 2 2 1  2 2 1 1 1 1 2 

 Machine index  3 3 1 4 2 1 2  1 3 1 4 3 2 2 

Figure 3. Procedures of one-point crossover 
 

  𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 
         

Original chromosomes Row 1 2 1 1 2 2 1 

Machine Index 3 1 1 4 3 2 2 
         

(a) Row exchange only Row 1 2 2 1 2 1 1 

Machine Index 3 2 1 4 3 2 3 
         

(b) Machine index exchange 

only 

Row 1 2 1 1 2 2 1 

Machine Index 3 2 2 4 3 1 1 
         

(c) Row and machine index 

exchange 

Row 1 2 2 1 2 1 1 

Machine Index 3 1 2 4 3 1 2 

Figure 4.  Procedures of swap mutation 
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Algorithm 1: Genetic Algorithm for DRLP 

1 Input: an instance (𝑛, 𝑙, 𝑑), GA parameter 

(𝑃, 𝑇, 𝑐𝑟, 𝑚𝑟) 

2 Initialize feasible solutions 𝑥𝑖 , 𝑖 = {1, 2, . . . , 𝑃} 
3 Insert 𝑥𝑖 to 𝐴 

4 Evaluate the fitness 𝑓𝑖  of each chromosome 𝑥𝑖 

5 Record the best solution 𝑥𝑏, where 𝑓𝑏 = 𝑓𝑖   
6 set 𝑠 = 1 

7 While 𝑠 ≤ 𝑇 do: 

8 Perform roulette wheel to select parents 
𝑝𝑖 , 𝑖 ∈ 𝐴 

9 for 𝑗 =  1 𝑡𝑜 𝑃/2 do: 

10 If 𝑈(0,1) < 𝑐𝑟 then: 

11 Determine cutting point 𝐶𝑃 =
𝑈(1, 𝑛 − 1) 

12 Perform one-point crossover 

13 for 𝑘 =  1 𝑡𝑜 𝑃 do: 

14 If 𝑈(0,1) < 𝑚𝑟 then: 

15 Determine the swap position 

16 Perform swap mutation 

17 Perform solution adjustment 

18 Insert 𝑥𝑖′ to 𝐴′ 
19 Evaluate the fitness 𝑓𝑖 ′ of each offspring 𝑥𝑖′ 
20 Record the best solution 𝑥𝑏′, where 𝑓𝑏′ = 𝑓𝑖′  
21 if 𝑓𝑏′ < 𝑓𝑏 

22 𝑥𝑏 = 𝑥𝑏′ 
23 𝑓𝑏 = 𝑓𝑏′ 
24 Replace the population 𝐴 ← 𝐴′ 
25 Update 𝑠 = 𝑠 + 1 

26 Output: best solution 𝑥𝑏, minimum objective 

value 𝑓𝑏 

 

Results and Discussions 
 

The computation experiments are executed on an 

Intel® CoreTM i7-10770 CPU 2.90 GHz with 32 GB of 

RAM with a Windows 10 operating system, and the 

proposed GA is developed on Python 3.7.6. To assess 

the performance of the GA, comparisons with the 

results of MIP are performed on several datasets. The 

instances for benchmarking are n = 9,10,11 (Simmons 

[16]); 𝑛 = 11,12,13 (Amaral [4]); 𝑛 = 14 (Secchin and 

Amaral [6]); 𝑛 = 15 (Amaral [17]); 𝑛 = 17 (Amaral 

[2]); and 𝑛 = 18. The complexity of the datasets is 

determined by the number of machines 𝑛, where the 

increase on the number of machine means more 

possible solutions thus enlarge the search space. The 

parameter settings of the proposed GA are population 

size 𝑃 = 100, maximum iteration 𝑇 = 3000, cros-

sover probability 𝑐𝑟 = 0.95, and mutation probability 

𝑚𝑟 = 0.1. Table 2 presents the results of computation 

experiments on all instances. 

 

The optimal values and the computation time of MIP 

are obtained from Amaral [5]; Amaral [3]; and 

Secchin and Amaral [6]. The differences ∆ are 

calculated as the percentage deviation between the 

optimal value and result of GA, indicated as follow. 
 

∆ =
𝑓𝐺𝐴−𝑓𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑓𝑜𝑝𝑡𝑖𝑚𝑎𝑙
× 100%                                             (19) 

where 𝑓𝐺𝐴 is the objective value obtained by GA, while 
𝑓𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the optimal objective value. The results 

indicates that the proposed GA return similar object-
tive values as compared to the optimal values in all 
instances with average differences ∆ is less than 
1.68%. This indicates that the proposed operators and 
solution adjustment process successfully explores the 
neighborhood of an individual by preserving its 
feasibility. In this way, the population is gradually 
improved towards the optimum value of a given 
objective function. Further, Figure. 5 shows the best 
obtained fitness of each generation in instance S9 and 
P18. 
 

The graph is cut until iteration 500 since there is no 
significant improvement beyond this iteration. To 
avoid premature convergence, we set mild mutation 
probability. Hence, although the algorithm has 
started to reach convergence, the mutation ensures 
that there is enough variability of solutions in each 
generation. The results show that the obtained 
objectives by GA are very close to the optimal value, 
which indicates that it can obtain the near optimal 
solution. The slight differences are actually caused by 
the assumption that both rows start at the same 
point. To minimize the traveled distance, the starting 
point of the shorter row can further be adjusted.  
 

Figure 6 depicts the comparison on computational 
time. The strength of the proposed GA lies in its 
computational speed as it can deliver good solutions 
in much shorter time than the MIP model. The out 27 
instances (S9, S10 and am11f), which are among the 
simplest problems. The differences on the com-
putation time increases as the instance complexity 
increases. The computation time of GA is relatively 
stable across various complexity as indicated in Fig. 
5, ranging from 37.2s for the simplest instances to 
75.70s for the most complex instances. It is found that 
the bigger portion of computational time for the GA is 
spent for fitness evaluation with average of 49.3% of 
the computation time is for solution adjustment, 
calculation of the distance between machines, and 
calculation of the objective function. The crossover 
and mutation operators consume 23.3% and 0.6% of 
computation time respectively, while the rest is for 
other processes such as for initial population 
generation, parent selection, and preserving the best 
solution. Hence, since the number of solutions 
generated by GA are uniform in all instances, the 
computational times of GA do not differ significantly. 
On the other side, the increase on complexity 
significantly elevate the computational time of MIP 
which causes MIP is unable to solve more complex 
instances, i.e. P17 and P18, in reasonable time. 
Meanwhile, the proposed GA can solve these 
instances efficiently, thus confirming its suitability to 
be applied for the DRLP with larger number of 
machines. computation time of MIP is faster than GA 
only in 3. 
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 Table 2. Results of computation 

No Instance 𝑛 
Objective values Time (s) 

Optimal GA ∆ MIP GA 

1 S9 9 1179 1181.5 0% 7.96 37.72 
2 S9H 9 2293 2294.5 0% 104.73 37.30 
3 S10 10 1351 1378.5 2% 32.7 40.83 
4 S11 11 3424.5 3513.5 3% 325.36 44.65 
5 am11a 11 5559 5696.5 2% 343.9 45.76 
6 am11b 11 3655.5 3683.5 1% 277.52 46.11 
7 am11c 11 3832.5 3858.5 1% 271 44.65 
8 am11d 11 906.5 926.5 2% 69.26 45.36 
9 am11e 11 578 584 1% 63.51 44.75 
10 am11f 11 825.5 855 4% 31.64 44.94 
11 am12a 12 1493 1529 2% 374.63 48.46 
12 am12b 12 1606.5 1657.5 3% 403.92 48.58 
13 am12c 12 2012.5 2072 3% 435 49.12 
14 am12d 12 1107 1117 1% 115.37 48.53 
15 am12e 12 1066 1090 2% 120.45 48.82 
16 am12f 12 997.5 1032 3% 150.35 48.77 
17 am13a 13 2456.5 2478.5 1% 12,481.17 52.46 
18 am13b 13 2864 2891 1% 10,935.62 52.93 
19 am13c 13 4136 4257 3% 1,697.90 52.81 
20 am13d 13 6164.5 6274.5 2% 3,380.06 52.93 
21 am13e 13 6502.5 6527.5 0% 9,144.51 52.75 
22 am13f 13 7699.5 7836.5 2% 11,920.70 53.53 
23 14a 14 2904 2921 1% 22,389.72 56.42 
24 14b 14 2736 2763 1% 9,151.56 57.71 
25 P15 15 3195 3221 1% 89,923.20 61.99 
26 P17 17 - 4865 - - 71.67 
27 P18 18 - 5665.5 - - 75.70 

  

(a) Instance S9 (b) Instance P18 

Figure 5. The best obtained fitness of each generation 

 

 

Figure 6. Comparison on computational time between GA and MIP 
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Conclusion 
 

This paper presents a GA for solving the DRLP with 

aims to minimize the objective function of material 

handling operational cost in shorter computer time. A 
set of instances with various complexity are used to 

evaluate the performance of the proposed GA. The 

results show that the proposed GA can deliver good 

solutions with small deviation from the optimal value 
obtained by MIP. The advantage of the proposed GA 

is that it can provide the solution in much shorter 

time than the MIP. Thus, it is suitable for 
computation of instances with more complexity. 
 

The future improvement can be explored by 

considering the exact position of the machine in the 

shorter row. In the current calculation, the first 

machines of both rows are placed from the same 
starting point. In the real application, the location of 

machines in the shorter row can be adjusted since this 

row has extra space, so that the material handling 
cost can be further minimized. 

 

References 
 

1. Mohamadghasemi, A., and Hadi-Vencheh, A., An 
Integrated Synthetic Value of Fuzzy Judgments 
and Nonlinear Programming Methodology for 
Ranking the Facility Layout Patterns, Computers 
and Industrial Engineering, 62(1), 2012, pp. 342-
348. 

2. Amaral, A. R., An Exact Approach to the One-
dimensional Facility Layout Problem, Operations 
Research, 56(4), 2008, pp. 1026-1033. 

3. Amaral, A. R., A Mixed-integer Programming 
Formulation for the Double Row Layout of Ma-
chines in Manufacturing Systems, International 
Journal of Production Research, 57(1), 2019, pp. 
34-47. 

4. Chung, J., and Tanchoco, J. M. A., The Double 
Row Layout Problem, International Journal of 
Production Research, 48(3), 2010, pp. 709-727. 

5. Amaral, A. R., Optimal Solutions for the Double 
Row Layout Problem, Optimization Letters, 7(2), 
2013, pp. 407-413. 

6. Secchin, L. D., and Amaral, A. R., An Improved 
Mixed-integer Programming Model for the 
Double Row Layout of Facilities, Optimization 

Letters, 13(1), 2019, pp. 193-199. 

 

 

 

 

 

 

 

 

 

7. Murray, C. C., Smith, A. E., and Zhang, Z., An 

Efficient Local Search Heuristic for the Double 

Row Layout Problem with Asymmetric Material 

Flow, International Journal of Production 

Research, 51(20), 2013, pp. 6129-6139. 

8. Zuo, X., Murray, C. C., and Smith, A. E., Solving 

an Extended Double Row Layout Problem using 

Multiobjective Tabu Search and Linear Program-

ming, IEEE Transactions on Automation Science 

and Engineering, 11(4), 2014, pp. 1122-1132. 

9. Wang, S., Zuo, X., Liu, X., Zhao, X., and Li, J., 

Solving Dynamic Double Row Layout Problem 

via Combining Simulated Annealing and Mathe-

matical Programming. Applied Soft Comput-

ing, 37, 2015, pp. 303-310. 

10. Amaral, A. R. S., A Heuristic Approach for the 

Double Row Layout Problem, Annals of Opera-

tions Research, 2020, pp. 1-36. 

11. Deb, K., Multi-objective Optimization using 

Evolutionary Algorithms (Vol. 16), John Wiley 

and Sons, 2001. 

12. Goldberg, D. E. Genetic Algorithms in Search, 

Optimization, and Machine Learning, 1989. 

13. Rifai, A. P., Dawal, S. Z. M., Zuhdi, A., Aoyama, 

H., and Case, K., Reentrant FMS Scheduling in 

Loop Layout with Consideration of Multi 

Loading-unloading Stations and Shortcuts, The 

International Journal of Advanced Manufactur-

ing Technology, 82(9-12), 2016, pp. 1527-1545. 

14. Datta, D., Amaral, A. R., and Figueira, J. R., 

Single Row Facility Layout Problem using a 

Permutation-based Genetic Algorithm, Euro-

pean Journal of Operational Research, 213(2), 

2011, pp. 388-394. 

15. Hou, S., Wen, H., Feng, S., Wang, H., and Li, Z., 

Application of Layered Coding Genetic Algorithm 

in Optimization of Unequal Area Production 

Facilities Layout, Computational Intelligence 

and Neuroscience, 2019. 

16. Simmons, D. M., One-dimensional Space 
Allocation: An Ordering Algorithm. Operations 
Research, 17(5), 1969, pp. 812-826. 

17. Amaral, A. R., On the Exact Solution of a Facility 
Layout Problem. European Journal of Operatio-
nal Research, 173(2), 2006, pp. 508-518. 

 

 

 

 


