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Abstract: A new evolutionary computation algorithm, Superbug algorithm, which simulates 
evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale 
optimization problems such as scheduling, transportation and assignment problems. In this 
work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS) by 
minimizing makespan. The FMS comprises of four machines and two identical Automated 
Guided Vehicles (AGVs). AGVs are used for carrying jobs between the Load/Unload (L/U) station 
and the machines. Experimental results indicate the efficiency of the proposed algorithm in its 
optimization performance in scheduling is noticeably superior to other evolutionary algorithms 
when compared to the best results reported in the literature for FMS Scheduling. 
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Introduction 

 

Over the years, researchers suggest that nature is a 

great source for inspiration to both develop intelli-

gent systems as well as provide solutions to complex 

problems. Evolutionary pressure forces living orga-

nisms to develop great expertise in fighting for food, 

territories and mates. Many of these skills and tech-

niques have been imitated to develop optimization 

algorithms, and the evolution over a number of gene-

rations enhances the performance of an algorithm. 

In this work, a new nature-inspired algorithm, based 

on bacterial evolution, Superbug algorithm is 

proposed.  

 

The algorithm is inspired by the behaviour of 

bacteria such as Staphylococcus aureus, Strepto-

coccus, Enterococcus, Salmonella and E. coli. Several 

antibiotics were developed to cure infections by these 

microorganisms in the early 20th century. It was dis-

covered that many of these bacteria had developed 

resistance to the antibiotics over time. The increa-

sing levels of antibiotic resistance and the emergence 

of epidemic strains of bacterial pathogens over the 

last decade (Enright et al. [7] and Livermore [9]) 

highlight the adaptability of bacteria and the 

remarkable speed of bacterial evolution. In the face 

of constant environmental challenges, the ability of 

bacteria to generate genetic variation is crucial for 

their survival. Bacterial genomes tend to evolve 

through several routes: Mutation to existing genes, 

DNA loss or rearrangement or horizontal transfer of 

genes from one bacterium to another (Ziebuhr et al. 

[17]). 
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Evolutionary computation has been applied to the 

scheduling of multiple CPU cores on a parallel 

computer, and has recreated known scheduling 

algorithms (Jaros et al. [8]). Of recent interest are 

bio-inspired approaches to manufacturing system 

design, including biomimetics, where computational 

systems mimic behaviours found in natural orga-

nisms. Examples of biomimetic approaches include 

mimicking the social behaviour of insect colonies 

(Truszkowski et al. [15]), flocking (Spector et al. [12] 

and Anthony [2]), and using the concept of 

chemotaxis to facilitate robust network routing. Two 

bio-inspired studies include the recent works 

(Babaoglu et al. [3, 4] and Patel et al. [10]) inspired 

by the synchronization of firefly flashes. Swarm 

intelligence algorithms such as Bee algorithm were 

applied to schedule jobs for a machine (Pham et al. 

[11]). Chong et al. [6] utilized an efficient neigh-

bourhood structure to search for feasible solutions 

and iteratively improve on prior solutions. 

 

Bilge and Ulusoy [5] presented a model for simul-

taneous scheduling of machines and material 

handling system in an FMS. This problem was 

approached using Genetic algorithms (GA) (Ulusoy 

et al. [16]). A new hybrid genetic algorithm composed 

of GA and heuristic for the simultaneous scheduling 

problem for minimization of makespan was pre-

sented (Abdelmaguid et al. [1]). A number of evolu-

tionary techniques have been applied for scheduling 

different elements in an FMS, making it a con-

venient problem for testing new solution method-

logies. 

 

The optimization of FMS schedules using non-

traditional techniques was performed (Sreedhar 

Kumar et al. [13]) The problem of simultaneous sche-

duling of machines and two identical automated 

guided vehicles (AGVs) in an FMS using Sheep 
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Flock Heredity algorithm was addressed (Subbaiah 

et al. [14]). In the current work, a new evolutionary 

algorithm based on bacterial evolution namely, 

Superbug algorithm is proposed in order to solve 

optimization problems. The algorithm is designed to 

enhance the diversity of the search domain by 

combining effective local and global search proce-

dures. This helps in obtaining high quality solutions 

compared to other existing optimization algorithms 

found in the literature. 

 

Methods 
 

Superbug Algorithm 

 

The primary mode through which a bacterium 

develops antibiotic resistance is through mutation. 

After mutation, a different gene sequence is gene-

rated, which attempts to survive the chemical action 

of the antibiotic. While this is similar to the evolution 

of other organisms, another technique used by 

bacteria is the Lateral gene transfer. In this, genes 

are transferred from one bacterium to another by cell 

to cell contact. This helps more bacteria acquire a 

drug resistant gene and enhance its chances of 

survival. The ability of the transformed bacterium is 

further improved by single point mutation, i.e. trans-

ferring a vulnerable portion of a gene to another 

location in the same gene sequence. 

 

The resulting bacteria have better resistance to the 

antibiotic. They reproduce and multiply their num-

bers. After going through these stages of evolution 

several times, a bacterium would have accumulated 

several antibiotic-resistant genes. Such a bacterium 

is called a superbug. This evolution process has the 

capability to generate a large number of bacteria 

with high antibiotic resistance compared to the 

present GA procedures. 

 

Stages in the Evolution of a Bacterium 

 

Genetic Mutation 

 

When the bacterium is exposed to the antibiotic, its 

normal metabolic processes are suppressed. This 

forces it to try to survive by mutating itself. Mutation 

rearranges part of the gene sequence so that it 

becomes immune to the antibiotic. The probability of 

a bacterium undergoing mutation depends on the 

levels of exposure to antibiotic and the extent of 

suppression of its metabolic activities. The mutation 

takes place in two levels, inverse mutation and 

pairwise interchange mutation (Subbaiah et al. [14]). 

 

Lateral Gene Transfer 

 

After undergoing mutation, a population of bacteria 

with varying levels of fitness (in terms of resistance 

to the antibiotic) emerges. A bacterium with higher 

fitness tries to increase its fitness by engaging 

contact with another bacterium having a lower 

fitness value. A random gene is transferred from the 

bacterium having lower fitness to the bacterium 

with higher fitness. This helps in transferring some 

of the drug resistant strains from one bacterium to 

another, thereby improving the fitness level consi-

derably. 

 

Single Point Mutation 

 

This technique is employed by the bacterium in the 

final stage of its evolution. A single gene is transferred 

to a random location in the bacterium itself, i.e. 

mutation takes place in a single point. This is called 

single point mutation or point mutation. 

 

Reproduction 

 

The set of bacteria which have acquired drug 

resistance tend to survive and reproduce. The next 

generation of bacteria, if exposed to the antibiotic, 

will employ the same techniques to further improve 

their resistance. After several generations, a set of 

bacteria with resistance to several drugs is deve-

loped, which is called a superbug. 

 

In the current work, the algorithm is tested on a 

FMS scheduling problem. The objective is to 

minimise the makespan which is taken as the fitness 

function. 

 

FMS Description 

 

An FMS is considered in which there are four 

machines having Computer Numerical Control 

machines (CNCs), each with an independent and 

self-sufficient tool magazine, one Automatic Tool 

Changer (ATC) and one Automatic Pallet Changer 

(APC) and with multiple Automated Guided 

Vehicles (AGVs) as material handling devices. The 

problem of simultaneous scheduling of machines and 

AGVs is addressed. We have considered 4 different 

layouts and 10 job sets consisting of 1-8 different job 

sets and operations on machines to be performed.  

 

The objective is to minimize makespan. An iterative 

procedure is developed in which a new machine 

schedule is generated using the superbug algorithm 

after each iteration. Figure 1 illustrates the different 

phases applied to every generated sequence. 

 

Assumptions 

 

The types and number of machines are known, there 

is sufficient input/output buffer space for each 

machine’s machine loading allocation of tools to 

machine assignment of operation to machine are  
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Figure 1. Phases of the given approach 

 

made pallet and other necessary equipment are 

allocated. AGVs are used for material transfer bet-

ween machines and also between L/U station and 

machines. The speed of AGV (40 m/min), the dis-

tance between the two machines and the distance 

between loading/ unloading machines are known. 

 

Input Data 

 

The input data that is, travelling time matrix and 

the layouts taken from Subbaiah et al. [14] are 

shown in Tables 1-4 and job sets for the problem 

taken from Bilge and Ulusoy [5] are shown in Table 

5. The L/U station serves as a distribution centre for 

parts not yet processed and as a collection centre for 

parts finished. All vehicles start from the L/U station 

initially. 

 

Scheduling of FMS 
 

Machines are scheduled based on the operation 

sequence derived by the algorithm. Initially one of 

the AGVs carries jobs from the L/U station to the 

respective workstations where the first operations 

are scheduled. For subsequent operations, whichever 

AGV is available reaches the machine where the 

previous operation has been completed, picks up the 

job and carries it to the machine scheduled for the 

next operation. The flowchart given in Figure 2 

shows the scheduling methodology adopted for this 

problem. The equations used for computing the job 

completion time and makespan are given in Eqs. (1) 

- (3). 
 

                                                                            (1) 

Job completion time:    ∑    
 
                                (2) 

Makespan:                                                      (3) 

 

 

 

 

Table 1. Travel time matrix for Layout 1 

Destination 

S
o
u

rc
e 

  L/U M1 M2 M3 M4 

L/U 0 6 8 10 12 

M1 12 0 6 8 10 

M2 10 6 0 6 8 

M3 8 8 6 0 6 

M4 6 10 8 6 0 

 

Table 2. Travel time matrix for Layout 2 

Destination 

S
o
u

rc
e 

  L/U M1 M2 M3 M4 

L/U 0 4 6 8 6 

M1 6 0 2 4 2 

M2 8 12 0 2 4 

M3 6 10 12 0 2 

M4 4 8 10 12 0 

 
Table 3. Travel time matrix for Layout 3 

Destination 

S
o
u

rc
e 

 

L/U M1 M2 M3 M4 

L/U 0 2 4 10 12 

M1 12 0 2 8 10 

M2 10 12 0 6 8 

M3 4 6 8 0 2 

M4 2 4 6 12 0 

 
Table 4. Travel time matrix for Layout 4 

Destination 

S
o
u

rc
e 

 

L/U M1 M2 M3 M4 

L/U 0 4 8 10 14 

M1 18 0 4 6 10 

M2 20 14 0 8 6 

M3 12 8 6 0 6 

M4 14 14 12 6 0 

 
where 

  : job number 

  : operation number 

  : number of job 

    : time needed for  -th operation of  -th job 

    : total traveling time for  -th job before  -th 

operation  

    : total processing time for  -th job before  -th 

operation  
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Table 5. Job set data 

Job Set 1 Job Set 6 

Job 1 M1(8) M2(16) M4(12)     Job 1 M1(9) M2(11) M4(7)   

Job 2 M1(20) M3(10) M2(18)     Job 2 M1(19) M2(20) M4(13)   

Job 3 M3(12) M4(8) M1(5)     Job 3 M2(14) M3(20) M4(9)   

Job 4 M4(14) M2(18)       Job 4 M2(14) M3(20) M4(9)   

Job 5 M3(10) M1(15)       Job 5 M1(11) M3(16) M4(8)   

Job Set 2 Job Set 7 

Job 1 M1(10) M4(18)       Job 1 M1(6) M4(6)     

Job 2 M2(10) M4(18)       Job 2 M2(11) M4(9)     

Job 3 M1(10) M3(20)       Job 3 M2(9) M4(7)     

Job 4 M2(10) M3(15) M4(12)     Job 4 M3(16) M4(7)     

Job 5 M1(10) M2(15) M4(12)     Job 5 M1(9) M3(18)     

Job 6 M1(10) M2(15) M3(12)     Job 6 M2(13) M3(19) M4(6)   

            Job 7 M1(10) M2(9) M3(13)   

            Job 8 M1(11) M2(9) M4(8)   

Job Set 3 Job Set 8 

Job 1 M1(16) M3(15)       Job 1 M2(12) M3(21) M4(11)   

Job 2 M2(18) M4(15)       Job 2 M2(12) M3(21) M4(11)   

Job 3 M1(20) M2(10)       Job 3 M2(12) M3(21) M4(11)   

Job 4 M3(15) M4(10)       Job 4 M2(12) M3(21) M4(11)   

Job 5 M1(8) M2(10) M3(15) M4(17)   Job 5 M1(10) M2(14) M3(18) M4(9) 

Job 6 M2(10) M3(15) M4(8) M1(15)   Job 6 M1(10) M2(14) M3(18) M4(9) 

Job Set 4 Job Set 9 

Job 1 M4(11) M1(10) M2(7)     Job 1 M3(9) M1(12) M2(9) M4(6) 

Job 2 M3(12) M2(10) M4(8)     Job 2 M3(16) M2(11) M4(9)   

Job 3 M2(7) M3(10) M1(9) M3(8)   Job 3 M1(21) M2(18) M4(7)   

Job 4 M2(7) M4(8) M1(12) M2(6)   Job 4 M2(20) M3(22) M4(11)   

Job 5 M1(9) M2(7) M4(8) M2(10) M3(8) Job 5 M3(14) M1(16) M2(13) M4(9) 

Job Set 5 Job Set 10 

Job 1 M1(6) M2(12) M4(9)     Job 1 M1(11) M3(19) M2(16) M4(13) 

Job 2 M1(18) M3(6) M2(15)     Job 2 M2(21) M3(16) M4(14)   

Job 3 M3(9) M4(3) M1(12)     Job 3 M3(8) M2(10) M1(14) M4(9) 

Job 4 M4(6) M2(15)       Job 4 M2(13) M3(20) M4(10)   

Job 5 M3(3) M1(9)       Job 5 M1(9) M3(16) M4(18)   

            Job 6 M2(19) M1(21) M3(11) M4(15) 

 

 

Table 6. Numbering of operations in Job Set 1 

Job No. Job 1 Job 2 Job 3 Job 4 Job 5 

Machine M1 M2 M4 M1 M3 M2 M3 M4 M1 M4 M2 M3 M1 

Operation No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 

Table 7. Calculation of makespan 

Job Machine AGV Travel time Job reach Job ready Job completion 

3,1 3 1 10 10 10 22 

2,1 1 2 6 6 6 26 

1,1 1 2 18 18 26 34 

5,1 3 1 18 18 22 32 

3,2 4 1 6 28 28 36 

3,3 1 1 10 46 46 61 

2,2 3 2 8 34 34 44 

1,2 2 2 14 48 48 64 

5,2 1 1 16 62 62 77 

4,1 4 2 22 70 70 84 

1,3 4 1 14 76 84 96 

4,2 2 2 8 92 92 110 

2,3 2 1 12 96 96 114 
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Figure 2. Scheduling flowchart 
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Figure 3. Flowchart for Superbug algorithm 
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Table 8. Initial sequences 

Sequence Makespan 

1 2 7 4 12 3 8 5 10 6 11 9 13 125 

7 1 10 12 8 4 2 13 3 11 5 9 6 114 

7 1 10 2 11 12 4 8 3 13 5 9 6 122 

4 5 10 11 12 1 2 7 8 9 13 6 3 134 

7 4 1 12 8 9 2 10 5 13 6 11 3 118 

4 7 8 5 10 6 11 1 2 9 12 3 13 139 

10 7 12 1 2 4 13 8 5 3 11 9 6 110 

4 5 7 6 8 1 10 2 9 3 11 12 13 153 

7 1 4 12 2 8 10 9 5 13 6 11 3 102 

4 5 1 6 12 13 7 10 11 2 3 8 9 157 

 

For example, Job set1 and Layout 1 are considered 

for scheduling. For scheduling the FMS and calcu-

lating the makespan, initially continuous numbers 

are given for each of the operations as shown in 

Table 6. These numbers are used to generate 10 

initial random sequences, while obeying the prece-

dence relation, i.e., the operations of a particular job 

must be in increasing order. 

 

Calculation of Makespan for a Particular 

Operation Sequence 
 

The following initial sequence is generated random-
ly, using the numbers assigned to the operations in 
Table 6. The processing time and travelling time 
matrix shown in Table 1-5. 
 

7 4 1 12 8 9 5 2 13 10 3 11 6 

 
The makespan of the job set when scheduled accord-
ing to the above sequence is calculated as given in 
Table 7. The first column denotes the Job number 
and the operation for that job needed to find the 
machine and processing time for that operation. The 
sequence of these operations is determined by the 
string of numbers generated by the algorithm. The 
second column indicates the machine used for this 
Job and operation, as given in Table 5. The third 
column specifies the AGV assigned to transport this 
job. This is determined by computing the time each 
AGV will take to reach the job and deliver it to its 
destination, based on its previous assignment and 
the travel times between machines (Tables 1, 2, 3 & 
4). The AGV which could deliver the job at the 
earliest, based on this calculation, is assigned. The 
column ‘Travel time’ denotes the time taken by the 
AGV to deliver the job while the column ‘Job reach’ 
specifies the time the job reaches its intended 
machine. ‘Job ready’ shows the time the job is taken 
up for processing (same as ‘Job reach’ if the machine 
is free, else some delay occurs). ‘Job completion’ is 
the time the job will get completed and be ready for 

next operation. This value is arrived at by adding the 
processing time (Table 5) to the ‘Job ready’ time. 

 

Implementation of Superbug Algorithm for 

Scheduling an FMS 
 

Flowchart of Superbug Algorithm 
 

Figure 3 shows the flow chart of the proposed 

Superbug algorithm. The first step is initializing a 

population composed of randomly generated indivi-

duals covering a wide range of solution spaceand 

measuring the fitness of the individuals. The sub-

sequent stages include the mutation and the gene 

transfer where unfit individuals get replaced by fit 

ones. These operations are repeated for several gene-

rations until the termination criteria are met. 

 

Steps in Superbug Algorithm 

The algorithm consists of the following steps: 

1. Generation of initial population 

2. Mutation of the bacteria (inverse and pairwise 

interchange mutation) 

3. Gene transfer between bacteria to enhance fitness 

4. Single point mutation of the modified bacteria 

 

Generation of Initial Population 

A set of ten initial sequences are randomly gene-

rated, as given in Table 8.  

 

Mutation 

The mutation consists of two steps, inverse mutation 

and pairwise interchange mutation: 

 

(a)   Inverse mutation 

In a sequence, two positions i and j are randomly 

selected. The portion of the sequence between these 

two positions is inverted to get a new mutated se-

quence. The new sequence represents the sequence 

of operations after mutation. If the makespan of the 

mutated sequence is less than the makespan of the 

original sequence, the old sequence is replaced by the 

new sequence. 
 

Original sequence: 

4 5 7 8 9 12 10 1 11 13 2 6 3 
 

Mutated sequence: 

4 6 9 8 7 13 11 2 10 12 1 5 3 

             
(b)  Pairwise interchange mutation 
Two positions are i and j randomly selected in the 
sequence. The operations in these positions are 
interchanged to obtain the mutated sequence. The 
makespan of the new sequence is compared with the 
makespan of the parent sequence. The sequence 
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having the lower makespan value is stored and used 
for next stage operation. 

Original sequence 

4 5 7 8 9 12 10 1 11 13 2 6 3 

 
Mutated sequence 

4 11 7 8 9 12 10 1 5 13 2 6 3 

Mutation at positions 2 and 9 

 

Gene Transfer 

Two sequences are needed for gene transfer. The 

sequence having the best makespan (lowest) in the 

given population is chosen as donor. The sequence 

with the second best makespan is the receptor. The 

selection is done this way to maximize the chances of 

the modified sequence giving an improved make-

span. A random set of operations is identified in the 

donor sequence. The order of operations in the 

identified set is used to replace the same operations 

in the other sequence. The resulting sequence 

replaces the original sequence if the makespan of the 

resulting sequence is less than that of the previous 

one. 

 
Donor sequence 

1 2 7 4 12 3 8 5 10 6 11 9 13 

 

Receptor sequence: 

4 5 10 11 12 1 2 7 8 9 13 6 3 
 

Gene 4 8 11 is transferred to the receptor sequence 

and replaces the gene 4 11 8 

 

Sequences after transfer: 

Donor sequence 

1 2 7 4 12 3 8 5 10 6 11 9 13 

 

Receptor sequence: 

4 5 10 8 12 1 2 7 11 9 13 6 3 
 

Single Point Mutation 

A random operation is selected in the sequence and 

moved to another random position in the sequence. 

If the makespan of the resulting sequence is less 

than that of the previous one, it replaces the 

previous sequence. 

 

Original sequence 

10 7 12 1 2 4 13 8 5 3 11 9 6 

Mutation of operation at position 6 to position 10 

 

Mutated sequence: 

10 7 12 1 2 13 8 5 3 4 11 9 6 
 

The set of sequences obtained from the above 

operations is sorted by their makespan values. The  

Table 9. Parameter analysis 

Para-

meter 

Values taken 

for analysis 

Best 

value 

Corres-

ponding best 

makespan 

S 5, 10, 15, 20 5 91 

N 
500, 1000, 

1500, 2000 
1000 92 

Pip 
0.05, 0.1, 0.15, 

0.2 
0.2 92 

Lg 3, 4, 5, 6, 7 3 92 

Pg 
0.5, 0.6, 0.7, 0.8, 

0.9 
0.9 92 

Ps 
0.1, 0.2, 0.3, 0.4, 

0.5 
0.4 92 

 

lowest makespan in the set is taken as the 

makespan of the generation. The sequences are 

again subjected to the operations till the convergence 

criterion is met. 

 

Selection of Parameters for Superbug Algorithm 

 

The algorithm has the following parameters to be 

defined. 

(1) Size of bacteria population (S) 

(2) No. of generations for which the algorithm is 

applied (N) 

(3) Probability of inverse mutation and pairwise 

interchange mutation (Pip) 

(4) Length of gene transferred from one bacterium 

to another (Lg) 

(5) Probability of gene transfer taking place (Pg) 

(6) Probability of bacteria undergoing single point 

mutation (Ps) 
 

An analysis is performed by assigning a set of values 

to each of the above parameters. The performance of 

the algorithm under each set of parameters is 

examined to arrive at an appropriate set of 

parameters that will provide optimal solutions to the 

problems considered. 

 

The population size is important here as the bacteria 

will transfer genes to one another to improve their 

fitness. Keeping the population too low will give in-

sufficient diversity of solutions, and a population too 

high will reduce the chances of constructive gene 

transfer. The number of generations is chosen in 

such a way that the results produced are reasonable. 

Probabilities of the inverse and pairwise mutations 

are kept low so that not too many unfit sequences 

are produced. Otherwise, due to the precedence res-

trictions in scheduling many of the mutated sequen-

ces will become unfit. For single point mutation, the 

probability is higher than inverse and pairwise mu-

tation since the mutation is self-induced. 

 
Table 9 shows the results of the analysis done on the 
parameters of the Superbug algorithm.  
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Figure 4. Convergence graph of makespan 

 

 
Table 10. Results 

Layout Job Set STW UGA AGA PGA SFHA Superbug 

1 

1 96 96 96 96 90 92 

2 105 104 102 100 96 94 

3 105 105 99 99 105 96 

4 118 116 112 112 119 111 

5 89 87 87 87 87 86 

6 120 121 118 118 118 94 

7 119 118 115 111 128 113 

8 161 152 161 161 137 117 

9 120 117 118 116 111 105 

10 153 150 147 147 148 129 

2 

1 82 82 82 82 80 73 

2 80 76 76 76 76 66 

3 88 85 85 85 74 71 

4 93 88 88 67 96 88 

5 69 69 69 69 72 65 

6 100 98 98 98 86 79 

7 90 85 79 79 87 74 

8 151 142 151 151 128 97 

9 104 102 104 102 93 87 

10 139 137 136 135 130 102 

3 

1 84 84 84 84 80 78 

2 86 86 86 86 80 78 

3 86 86 86 86 79 76 

4 95 91 89 89 92 86 

5 76 75 74 74 73 70 

6 104 104 104 103 86 80 

7 91 88 86 83 94 83 

8 153 143 153 153 130 98 

9 110 105 106 105 94 93 

10 143 143 141 139 127 116 

4 

1 108 103 103 103 101 100 

2 116 113 108 108 113 104 

3 116 113 111 111 115 109 

4 126 126 126 126 130 125 

5 99 97 96 96 96 95 

6 120 123 120 120 125 103 

7 136 128 127 126 145 124 

8 163 163 163 163 146 136 

9 125 123 122 122 126 115 

10 171 164 159 158 173 145 
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Figure 4 shows the minimum makespan and mean 

makespan given by the algorithm when run with the 

above parameters. 

 

Results and Discussions 
 

The Superbug algorithm is used for generating 

optimal schedules for each problem by minimizing 

the makespan. The coding has been developed using 

MATLAB. A series of trial experiments are used to 

estimate the optimal parameters for the algorithm. 

Every instance of a problem is executed for 10 runs. 

Any alteration of the above parameters led to con-

vergence at higher objective values than while using 

the optimal parameters. From the convergence 

graph for the algorithm (Figure 4) it is observed that, 

even as the minimum makespan is obtained in few 

generations, the mean makespan converges only 

after several hundred generations. This indicates the 

diversity of the solutions in the search space. 

 

The results obtained from the algorithm for different 

problem sets are given in Table 10. The values of 

makespan obtained at convergence are compared 

with different algorithms. From Table 10, 36 out of 

40 problems give better results using Superbug algo-

rithm when compared with other standard algo-

rithms such as Sliding Time Window (STW), Abdel-

maguid Genetic Algorithm (AGA), Ulusoy Genetic 

Algorithm (UGA), Proposed Genetic Algorithm 

(PGA) by Subbaiah et al.[14] and Sheep Flock 

Heredity Algorithm (SFHA) 

 

Conclusion 
 

The proposed algorithm is found to be robust for the 

test problems and performs exceedingly well in 

majority of the problems considered. The algorithms 

present a good number of diversified solutions for the 

set of problems considered. The diversity in the set of 

solutions after every generation is preserved by a 

combination of local and global search procedure. 

The main contribution of this work is to prove the 

superiority of solutions for the given scheduling 

problem found by this algorithm as compared to 

other optimization algorithms. 

 

The future research includes application of this 

algorithm for single or multiple objectives case 

considering different criteria like mean flow time, 

total tardiness, and maximum tardiness. The pro-

posed algorithm can be applied to the scheduling 

problems in various manufacturing systems such as 

cellular manufacturing. Furthermore, it is possible 

that the proposed algorithm can be applied to opti-

mize multi machine environment and the dynamic 

JSSP. 
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