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Abstract: Bi-objective Emergency Medical Service Design Problem is a problem to determining the 
location of the station Emergency Medical Service among all candidate station location, the 
determination of the number of emergency vehicles allocated to stations being built to serve 
medical demand. This problem is a multi-objective problem that has two objective functions that 
minimize cost and maximize service. In the real case, there is often uncertainty in the model such 
as the number of demand. To deal with the uncertainty on the bi-objective emergency medical 
service problem is using Robust Optimization which gave optimal solution even in the worst case. 
Model Bi-objective Emergency Medical Service Design Problem is formulated using Mixed Integer 
Programming. In this research, Robust Optimization is formulated for Bi-objective Emergency 
Medical Service Design Problem through Robust Counterpart formulation by assuming 
uncertainty in demand is box uncertainty and ellipsoidal uncertainty set. We show that in the case 
of the bi-objective optimization problem, the robust counterpart remains computationally 
tractable. 
 
Keywords: Bi-objective emergency medical service design problem, branch and bound method, 
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Introduction 

 
According to Zhang and Jiang [1] emergency health 
services are designed to provide health care to people 
who need medical assistance quickly and effectively. 
In the future life, it is hard to be predicted what will 
happen, maybe in a region can occur disasters, epi-
demics, accidents or other events that require hand-
ling health. This causes emergency health service 
facilities to be one of the most important public 
facilities in handling health.   
 
Facilities are a means to facilitate the implementa-
tion of functions (KBBI [2]). Emergency health service 
facilities provide services to emergency medical 
requests. To be able to provide maximum service, the 
location of construction of facilities must be consi-
dered to reach points of the request. So, it is essential 
to determine the location of the construction of 
emergency health service facilities. 
 
According to Mahanani and Rahardjo [3], the selec-
tion of the location of an appropriate health facility 
greatly determines the achievement of overall health 
services to the community. In conducting climax, 
selection states the best combination of several 
characteristics, namely population, location 
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and distance, form and access. Based on the 
Government Regulation of the Republic of Indonesia 
No. 47 of 2016 (see [4]) concerning health care facili-
ties in Article 8 paragraph 3 that the determination of 
the number and types of Health Service Facilities is 
carried out by the Regional Government by conside-
ring the elements, area, health needs, population size 
and distribution, disease patterns, utilization, and 
ability to utilize technology. Then, in article 10 para-
graph 1, 2 and 3, it is stated that the Regional Govern-
ment determines the number of independent Health 
Workers places based on community needs for health 
services in one area. The determination of community 
needs for health services is done through the deter-
mination of the ratio of the number of health workers 
compared to the number population carried out by 
considering geographical conditions and community 
accessibility, utility level, and service hours. 
 
Zhang and Jiang [1] have discussed that in emergen-
cy health service design problem, some emergency 
vehicles will be allocated to the facilities constructed. 
Determining the location of construction of the facility 
considers the locations of demand, which can be 
reached from facilities by considering cost factors such 
as the cost of building facilities, operations and trans-
portation. Operational costs are related to the cost of 
procuring emergency vehicles at the facility. Trans-
portation costs are related to the distance between 
facilities and points of the request. Based on this 
description, the problem of the design of emergency 
health services includes the problem of location faci-
lities that aim to determine the location of construc-
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tion of facilities by minimizing all related costs. After 
determining the location of the emergency health care 
facilities that have been built, the next problem is 
determining the proportion of requests served by 
facilities at that location. Then, the next problem is 
the determination of the number of emergency ve-
hicles allocated to each facility built to support service 
at each point of request. 
 
Construction of emergency health service facilities 
not only considers cost factors, but also considers 
maximum service to demand. Church and Revelle [5], 
argue that the level of service is measured by the 
number of requests served within the specified travel 
standard distance. Therefore, another goal of the 
emergency health service design problem is to maxi-
mize the number of requests served within the 
standard range. This is the same as minimizing the 
number of requests that are not served with distances 
greater than the standard distance. The large num-
ber of requests that are not served within the stan-
dard distance will be subject to penalty weight costs. 
This causes the goal to minimize the cost of penalty 
penalties due to underserved demand. Based on the 
description above, the purpose of the emergency 
health service design problem has two objective 
functions, namely, first minimizing the cost of 
building facilities, procuring emergency vehicles, 
transportation, and secondly minimizing the cost of 
penalty weight due to underserved demand within 
standard distance. The existence of these two objec-
tive functions is then referred to as the bi-objective 
function. 
 
Research on the issue of emergency health service 
design examined by Toregas, et al. [6] proposed a 
Location Set Covering Model (LSCP) with the objec-
tive function of minimizing the number of facilities to 
cover all requests. Then Church and Revelle [5] 
proposed a Maximal Covering Location Problem 
(MCLP) that maximizes the number of requests 
covered by limited facilities. Furthermore, Gendreu, 
et al. [7] consider multiple coverage models and 
solutions obtained through taboo search heuristics 
developed. 
 
Harewood [8] discusses multi-objective problems 
Maximum Availability Location Problems that adopt 
the Queuing Probabilistic Location Set Covering 
Problem approach in determining the location of 
emergency health services in Barbados by maximi-
zing populations that receive services with predeter-
mined distance and confidence levels and minimize 
costs over the population. Furthermore, Araz et al. [9] 
discuss the Maximal Covering Location Multi-
objective model to determine the best location with a 
limited number of emergency vehicles so that the 
service level is optimal by maximizing the population 

fulfilled by an emergency vehicle, maximizing 
population with reserve coverage, and minimizing the 
total distance travelled from the facility location to 
each requested point is completed using Linear 
Lexicographic Programming and Fuzzy Goal Pro-
gramming. Almeida et al. [10] discuss a multi-objec-
tive approach to determining the location of an emer-
gency in an urban area. A discussion on A bi-objective 
location-allocation problem of temporary emergency 
stations and ambulance routing in a disaster situa-
tion is presented by Moghaddam et al. [11], also 
discussion on Two-Stage Multiobjective Optimization 
for Emergency Supplies Allocation Problem under 
Integrated Uncertainty (see [12]).   
 
Beraldi, et al. [13] overcome uncertainty in the pro-
blem of emergency health service design using sto-
chastic programming and some use the probabilistic 
paradigm to determine the location of emergency 
health service facilities and the allocation of the num-
ber of emergency vehicles. Furthermore, Beraldi, et 
al. [14] propose formulations and solutions from pro-
babilistic models to determine the optimal location of 
facilities in a compact emergency system and use sto-
chastic programming to overcome uncertainties with 
probabilistic constraints with a two-stage framework. 
 
On the issue of emergency health services, demand 
parameters are one of the most critical parameters. 
However, in the real case, uncertainty is often found 
in the request parameters. Therefore, to overcome the 
uncertainty in the request parameters, an optimiza-
tion technique is needed to solve it. One of the 
optimization techniques used to solve uncertainty 
problems in this problem is Robust Optimization. 
According to Bental and Nemirovski [15], Robust 
Optimization is a modelling method combined with a 
computational tool to process optimization problems 
where the data is uncertain and only known in the 
form of a set of uncertainties. In contrast to stochastic 
optimization which begins by assuming uncertainty 
with a probabilistic description where uncertainty is 
a random variable that is known with certainty. 
Based on the background described, in this paper 
discussed the Robust Optimization model for Objec-
tive Bi-Emergency Health Service Design with uncer-
tain requests to determine the location of construction 
of facilities, the allocation of the number of emergency 
vehicles and the proportion of requests served by 
facilities. Refers to [1], in this problem it is assumed 
that at the point of construction site no facilities have 
been built, so that new health facilities will be built to 
provide services to medical requests around the candi-
date area of the facilities constructed. The aim is first 
to minimize the cost of building facilities, procuring 
emergency vehicles, and transportation, then the 
second to minimize the cost of penalty weights. 
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The bi-objective emergency medical service design 
problem is formulated as a problem with two objective 
functions, and mixed integer programming, the 
Lexicographic Method [16] is to handle the bi-objec-
tive function. As we relax first the binary variables, 
the robust counterpart is formulated in Section 3. To 
obtain the calculation of the example, the Branch and 
Bound Method (see [17] is employed. In this paper, 
the completion of the bi-objective problem in this 
paper uses the Lexicographic Method [16] which 
ranks objective functions based on priority.  In this 
paper, the secondary data that refers to journals 
written by Ndiaye, M., and Alfares, H. [18] is used. 
The assumptions are the uncertainty lies in the 
demand parameter, there is no assumed opportunity 
distribution, candidates for the location of the 
construction of emergency health care facilities and 
candidate locations for requests are known, requests 
can be served by several emergency health care 
facilities built. Each request on the candidate location 
request must be served. The parameter assumed in a 
numerical experiment is the unit of transportation 
costs, a relatively large number and the weight of 
uncertain demand. The main aim of this paper is to 
obtain a Robust Counterpart Optimization formu-
lation that is computationally tractable on the com-
pletion of a bi-objective problem model of emergency 
health service design. Also, to obtain the optimal 
robust numerical experimental results from the 
application of Robust Optimization on the completion 
of the bi-objective problem model of emergency health 
service design. 
 
In this paper, the discussion focuses on how the 
robust counterpart of the uncertain bi-objective emer-
gency medical service design problem is obtained. In 
[1], the discussion of RC with box uncertainty is not 
discussed, this paper the robust counterpart with box 
uncertainty is presented. Differs from [1], in this 
paper we use the box and ellipsoidal uncertainty set 
as discussed in [19] and [20], where the box and 
ellipsoidal uncertainty is presented in norm formu-
lations. 
 

Methods 
 
Bi-objective Emergency Medical Service 
Problem 
 
Referring to Zhang and Jiang [1] the issue of emer-
gency health service design has two location points 
considered, namely the candidate location of the 
emergency health service facility and the point of 
location of the request. Emergency health services 
handle requests from the location of requests. The 
aim is to determine the location of construction of 
facilities from all candidate points of facility location, 
the number of emergency vehicles that are allocated 

and the proportion of requests handled by each faci-
lity for each demand location considering the mini-
mum costs and service level to demand. The forms of 
costs considered include the cost of building facilities, 
the cost of procuring emergency vehicles, and trans-
portation costs, while the level of service is measured 
by maximizing the demand for the same emergency 
health services by minimizing the number of under-
served requests. 
 
Model Bi-objective Problem Emergency Medical Ser-
vice Design (MBPEMSD) has two objective functions, 
namely minimizing costs and minimizing unmet de-
mand within a specified travel distance. The specified 
travel distance is the maximum distance to serve the 
request 𝑖 which is denoted by 𝑆. 
 
The following notation is used in bi-objective emer-
gency medical service design problem model.  
 
Sets and parameters are 

𝐽 : set point location of facility construction 
with 𝑗 ∈ {1,2, … , 𝐽} 

𝐼 : the set of points of demand location 𝑖 ∈
{1,2, … , 𝐼}, 

𝐼  : the set of demand point greater than 
predetermined maximum distance to 
handle demand at point 𝑖, i.e. 𝑖|𝑑 > 𝑆  

𝑓  : the construction cost the emergency 
medical service facility at point 𝑗 

𝑝  : the operational cost an emergency vehicle 
at emergency medical service at point 𝑗 

𝑑  : the distance between demand at point 𝑖 
with points of candidate facility at point 𝑗 

𝑐 : the unit transportation cost 
𝑞  : the maximum number of concurrent 

demand at demand point 𝑖 
𝜇  : the average demand at demand at point 𝑖 
𝑀 : a sufficiently large number 
𝑊 : the weight because unfilled demand  

 
Decisions Variables are the following  

𝑦  : equals 1, if candidate facility 𝑗 open and 0 
otherwise 

𝑥  : the proportion of demand point 𝑖 served 
by facility 𝑗 

𝑛  : the number of emergency vehicles at 
facility 𝑗 

 
Refers to Zhang and Jiang [1] the deterministic model 
of the bi-objective problem of emergency health 
service design that minimizes total costs and under-
served requests within the specified travel distance is 
modelled as follows. The first objective function is to 
minimize the cost of building emergency health care 
facilities, emergency vehicle operating costs, and 
transportation costs from facilities to the point of 
request. 
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𝑓 : min ∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + ∑ ∑ 𝑐∈∈∈ 𝑑 𝜇 𝑥     (1) 
 
The second objective function is to minimize the 
demand that is not served in 𝑆 where the proposed 
objective function is to minimize the cost of building 
facilities, the cost of operating emergency vehicles and 
the cost of penalty weights given due to underserved 
requests within the 𝑆, travel distance. 
𝑓 : min ∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + 𝑊 ∑ ∑ 𝜇 𝑥∈∈∈        (2) 
 
The constraint function (3) ensure that demand at 
each demand point are served 
∑ 𝑥 = 1, ∀𝑖 ∈ 𝐼∈                                                                     (3) 
 
The constraint function (4) and (5) state that demand 
point and vehicle can only be assigned to open EMS 
facility 
𝑥 ≤  𝑦 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                                                    (4) 
𝑛 ≤  𝑀𝑦 , ∀ 𝑗 ∈ 𝐽                                                           (5) 
 
The constraint function (6) stipulate that the number 
of emergency vehicles at point 𝑗 is no less than maxi-
mum number of concurrent demands at demand 
point 𝑖. 
∑ 𝑞 𝑥 ≤ 𝑛 , ∀ 𝑗 ∈ 𝐽∈   (6) 
 
Constraint (7) show the proportion of demand at 
location 𝑖 that can be served by EMS facility 𝑗 
0 ≤ 𝑥 ≤  1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                 (7) 
 
Constraint (8) state if facility is built then the value 
is 1 and otherwise 0. 
𝑦 ∈ {0,1}, ∀ 𝑗 ∈ 𝐽                              (8) 
 
Constraint (9) state the number of emergency vehicles 
that allocated to the built facility is integer value. 
𝑛 ∈ 𝑍 , ∀ 𝑗 ∈ 𝐽                                                               (9) 
 
Thus, the complete optimization model for Bi-objecti-
ve Problem of Emergency Medical Service Design can 
be rewrite as follows 
min 𝑓 : (1)  
min 𝑓 : (2)                 (10) 
𝑠. 𝑡 (3) − (9)  
 
In the next section, discussion about the theory of 
Robust Optimization is presented. This theory is pro-
posed by [15] and also discussed in [21], [22], [19] and 
also [20]. 
 
Robust Optimization 
Based on [15], Uncertain Linear Programming 
(ULP) is defined as follows.  
 
min{𝑐 𝑥: 𝐴𝑥 ≤ 𝑏, (𝑐, 𝐴, 𝑏) ∈ 𝒰}   (11) 

Where 𝑐 ∈ 𝑅 , 𝐴 ∈ 𝑅 × , and  𝑏 ∈ 𝑅  denote uncer-
tain coefficients, and 𝒰 denotes uncertainty set.  The 
decision environment is assumed to be in the follow-
ing three conditions. Firstly, decisions are off-line the 
entire decision vector 𝑥 is to be fixed prior to knowing 
which value the actual parameters take (“here and 
now” decision). In the dynamic (ULP) case only part 
of the variables (𝑥 , … , 𝑥 ) need to be determined off-
line. The rest may be determined after some of the 
uncertain parameters become know (“wait and see” 
decision). Secondly, the information on the data 
(𝑐, 𝐴, 𝑏) is “crude” and is captured by a compact 
uncertainty set 𝒰.Thirdly, the inequality constraint 
𝐴𝑥 ≤ 𝑏 are “hard”: i.e, they must all be satisfied 
whenever the uncertain parameter resides in 𝒰. 
 
Robust optimization approach converts the uncertain 
problem of (11) into the following single deterministic 
problem, which call Robust Counterpart (RC): 
𝜋∗ = min{𝑐 𝑥|𝐴𝑥 ≤ 𝑏, ∀(𝑐, 𝐴, 𝑏) ∈ 𝒰}                        (RC) 

 
A vector 𝑥∗is called a robust optimal solution if for all 
realization (𝑐, 𝐴, 𝑏) ∈ 𝒰, 𝑥∗is feasible, and the value of 
the objective function is guaranteed to be at most 𝜋∗. 
Problem (RC) equivalent as a problem with a linear 
certain objective function and only uncertain cons-
traints as follows: 
min

,
𝑡: 𝑐 𝑥 − 𝑡 ≤ 0, 𝑎 𝑥 − 𝑏 ≤ 0, 𝑖 = 1, … , 𝑚, ∀(𝑐, 𝐴, 𝑏) ∈

𝒰       (12) 
 
Note this problem is a semi-infinite programming 
problem.  
 
In robust optimization, robustness with respect to 𝒰 
can be formulated constraint-wise, so that one can 
look at the impact of uncertainty on each constraint 
individually. At the risk of some ambiguity, we tem-
porarily drop the constraint index 𝑖 and consider the 
canonical robust semi-infinite constraint 
𝑎 𝑥 − 𝑏 ≤ 0, ∀𝑎 ∈ 𝒰   (13) 
 
Then, describe the uncertainty parameters 𝑎 and the 
uncertainty set 𝒰 in term of a primitive factor 𝜁 ∈ 𝑅  
which can be written as follows: 
𝑎 = 𝑎 + 𝑃𝜁  (14) 
 
Where 𝑎 ∈ 𝑅 , 𝑃 ∈ 𝑅 × , and  
𝒰 = {(𝑎 = 𝑎 + 𝑃𝜁)|𝜁 ∈ 𝑍}  (15) 
 
Where 𝑍 ⊂ 𝑅  is the uncertainty set for the primitive 
factor. The fixed vector 𝑎 is called as nominal. 
 
Based on [20] to produce a fulfilling representing 𝒰  
(17) can be defined the uncertainty 𝑎 in a simple inter-
val as follows: 
𝒰 = {𝑎|𝑎 ≤ 𝑎 ≤ 𝑎 }   (16) 
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With define: 

𝑎 = , 𝑃 = 𝑑𝑖𝑎𝑔                (17) 

 
The challenge in Robust Optimization is to find for 
which types of uncertainty sets problem can be refor-
mulated into a tractable optimization problem, which 
is define as convex optimization problem (see [23]). 
According to [19] there are some uncertainty set in-
cluding box uncertainty set and ellipsoidal uncer-
tainty set which guarantee a computationally tract-
able robust counterpart can be achieved, as can be 
seen on [15] and [21]. 
 
Box Uncertainty Set and Ellipsoidal Uncertain-
ty Set 
 
Based on [20], in this section a derivation of a tract-
able RC formulation for robust linear optimization 
problem with interval (box) is presented. Since one of 
the assumptions is that the uncertainty is constraint-
wise, then  
(𝑎 + 𝑃𝜁) 𝑥 ≤ 𝑏, ∀𝜁: ‖𝜁‖ ≤ 𝜌                                           (18) 
 
Where 𝑥 satisfied (18) if and only if 𝑥 satisfies: 
𝑎 𝑥 + ‖𝑃 𝑥‖ ≤ 𝑏                                                      (19) 
 
According to [22], a special case of box uncertaity 
occurs when the uncertaity is relative to the nominal 
velues, so that the uncertainty set has the form 
𝒰 = {𝑎: |𝑎 − 𝑎 ≤ 𝛾𝑎} = [(1 − 𝛾)𝑎, (1 + 𝛾)𝑎]           (20) 
 
Then we have: 
max

∈𝒰
𝑎 𝑥 = (1 + 𝛾)𝑎 𝑥                                           (21) 

 
Choose 𝑃 = 𝛾𝑎 then:   
‖𝑃 𝑥‖ = ‖(𝛾𝑎) 𝑥‖ = |(𝛾𝑎) 𝑥| = (𝛾𝑎) 𝑥           (22) 
 
In ellipsoidal uncertainty, Robust Counterpart 
becomes: 
(𝑎 + 𝑃𝜁) 𝑥 ≤ 𝑏, ∀𝜁: ‖𝜁‖ ≤ 𝜌                                 (23) 
 
where 𝑥  satisfies (23) if and only if 𝑥 satisfies: 
𝑎 𝑥 + ‖𝑃 𝑥‖ ≤ 𝑏                                                      (24) 
 
In the next section the determination of Robust 
Optimization Model for Bi-objective Emergency 
Medical Service Design Problem with Demand 
Uncertainty is presented. 
 

Results and Discussions 
 
In this section the derivation of RC for uncertain Bi-
objective Emergency Medical Service Design Problem 
Model is presented. Refers to [1] assume that demand 
(μ )  and (q ) as uncertain parameters that effect in 
two objective function on the model become uncertain, 

so it must be conducted into certain objective function 
by eliminating the uncertain parameters from object-
tive function and presenting it in form single variable 
τ  and τ .   
 
Consider that the canonical form of Bi-objective 
Emergency Medical Service Design Problem Model 
(BEMSDPM) with demand uncertainty is as follows. 
min 𝜏                  (25) 
min 𝜏                  (26) 
s.t 
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + ∑ ∑ 𝑐∈∈∈ 𝑑 𝜇 𝑥 − τ + β = 0                                                                        

           (27) 
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + 𝑊 ∑ ∑ 𝜇 𝑥∈∈∈ − 𝜏 + β = 0  
 (1) 
∑ 𝑥 + 𝑟 = 1, ∀𝑖 ∈ 𝐼∈                                              (29) 
𝑥 + 𝑆 = 𝑦 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                              (30) 
𝑛 + 𝑡 = 𝑀𝑦 , ∀ 𝑗 ∈ 𝐽                                                  (31) 
∑ 𝑞 𝑥 + 𝑢 ≤ 𝑛 , ∀ 𝑗 ∈ 𝐽∈                                         (32) 
𝑥 + 𝑣 = 1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                            (33) 
𝑦 ∈ {0,1}, ∀ 𝑗 ∈ 𝐽                                                         (34)   
𝑛 ∈ 𝑍 , ∀ 𝑗 ∈ 𝐽                                                             (35) 
𝑟 ≥ 0, ∀𝑖 ∈ 𝐼                                                               (36) 
𝑡 , 𝑢 ≥ 0, ∀ 𝑗 ∈ 𝐽                                                          (37) 
𝑥 , 𝑠 , 𝑣 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                        (38) 
𝜏 , 𝜏 , β , β ≥ 0                                                           (39) 
∀𝜇 , 𝑞 ∈ 𝒰, ∀𝑖 ∈ 𝐼                                                         (40) 
 
Notes that 𝑟 , 𝑡 , 𝑢 , 𝑠 , 𝑣 , β , β ≥ 0 are slack varia-
ble that is added to get the canonical form.  
 
The next step is to determine Robust Counterpart of 
uncertain model above. The formulation of Robust 
Counterpart (RC) depends on uncertainty set select-
ed. If the right uncertainty set is selected, then Robust 
Counterpart can be formulated into tractable optimi-
zation problem. In the following section, the RC is 
presented in two cases of uncertainty sets, i.e., box 
and ellipsoidal uncertainty sets. 
 
Determining Robust Optimization Model with 
Box Uncertainty Set  
 
In case box uncertainty set, demand is assumed un-
certain and bounded on a symmetry interval around 
certain nominal value, so the form of uncertainty set 
for this problem as follows. 
𝒰 , = {�̅� + 𝑃𝜁: ‖𝜁‖ ≤ 1}                                         (41) 
𝒰 , = {𝑞 + 𝑃𝜁: ‖𝜁‖ ≤ 1}                                         (42) 
 
where �̅�, 𝑞 ∈ 𝑅 are the nominal value, 𝑃 ∈ 𝑅 ×  and 
𝜁 ∈ 𝑅  is a primitive factor.  
In this problem, the constraints with uncertain 
parameter are (27), (28), and (32). Assume that the 
uncertainty lies within a box uncertainty set (41), 
thus the constraint (27) can be re-write as follows. 
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Using the same techniques to constraint (28) and (32) 
as we do for obtaining the robust counterpart of con-
straint (27), with using box uncertainty set approach 
of (40) and (41) we have the equivalent form of (28) 
and (32) respectively as follows: 
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛∈ +

𝑊 ∑ ∑ �̅� 𝑥∈ +∈ 𝑊 ∑ ∑ 𝛾�̅� 𝑥∈∈ −τ + β = 0       (44) 
∑ 𝑞 𝑥 +∈ ∑ 𝛾𝑞 𝑥 − 𝑛 + 𝑢 = 0∈                         (45) 
 
Change constraint (27), (28) and (32) with constraint 
(43), (44) and (45) so we have the Robust Counterpart 
for BEMSDPM with demand uncertainty using box 
uncertainty set approach as follows : 
min 𝜏        
min 𝜏   
s.t 
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + ∑ ∑ 𝑐∈∈∈ 𝑑 �̅� 𝑥 +
∑ ∑ 𝛾𝑐𝑑�̅� 𝑥∈∈ − τ + β = 0                                                                         
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + 𝑊 ∑ ∑ �̅� 𝑥∈∈∈ +

𝑊 ∑ ∑ 𝛾�̅� 𝑥∈∈ − 𝜏 + β = 0  
∑ 𝑥 + 𝑟 = 1, ∀𝑖 ∈ 𝐼∈                                               
𝑥 + 𝑆 = 𝑦 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                              
𝑛 + 𝑡 = 𝑀𝑦 , ∀ 𝑗 ∈ 𝐽                                                  
∑ 𝑞 𝑥 + ∑ 𝛾∈ 𝑞 𝑥 − 𝑛 + 𝑢 = 0∈                                          
𝑥 + 𝑣 = 1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                             
𝑦 ∈ {0,1}, ∀ 𝑗 ∈ 𝐽                                                            
𝑛 ∈ 𝑍 , ∀ 𝑗 ∈ 𝐽                                                              

𝑟 ≥ 0, ∀𝑖 ∈ 𝐼                                                                
𝑡 , 𝑢 ≥ 0, ∀ 𝑗 ∈ 𝐽                                                           
𝑥 , 𝑠 , 𝑣 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                         
𝜏 , 𝜏 , β , β ≥ 0                                                           (46)                                                      
 
Robust Counterpart Model (46) can we classify into 
Linier Programing. So, Robust Counterpart can be 
guaranteed computationally tractable based on 
theorem in [15] and [21]. 
 
Robust Optimization Model with Ellipsoidal 
Uncertainty Set Approach 
 
In case ellipsoidal uncertainty set, demand is 
assumed uncertain and bounded on a ball with radius 
Ω centered at the origin point, so the form of the 
uncertainty set for this problem as follows: 
𝒰 , = {�̅� + 𝑃𝜁: ‖𝜁‖ ≤ 1}                                        (47) 
𝒰 , = {𝑞 + 𝑃𝜁: ‖𝜁‖ ≤ 1}                                        (48) 
 
where �̅�, 𝑞 ∈ 𝑅 are the nominal value, 𝑃 ∈ 𝑅 ×  
and 𝜁 ∈ 𝑅  is a primitive factor. Constraint func-
tions that have uncertainty parameter is (27), (28) 
and (32), so with using ellipsoidal uncertainty set 
approach in (46), in constraint (27)  we have the 
equivalent form as follows: 
 

∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + ∑ ∑ 𝑐∈∈∈ 𝑑 𝜇 𝑥 − τ + β , ∀𝜇 𝜖𝒰  
⟺ ∑ 𝑓

𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + max

𝜇∈𝒰 ,

∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖
𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β

1
= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + max

‖ ‖
∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗 𝜇

𝑖
+ (𝑃𝑖)𝜇(𝜁)𝑖 𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β

1
= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 max
:‖ ‖

∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗 (𝑃𝑖)𝜇(𝜁)𝑖 𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β
1

= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 ∑ ∑ 𝑐𝑑𝑖𝑗(𝑃𝑖)𝜇𝑥𝑖𝑗𝑖∈𝐼 −𝑗∈𝐽 τ1 + β
1

= 0  

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 ∑ ∑ 𝑐𝑑𝑖𝑗(𝑃𝑖)𝜇𝑥𝑖𝑗𝑖∈𝐼𝑗∈𝐽 −τ1 + β
1

= 0  
⟺ ∑ 𝑓

𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 ∑ ∑ 𝑐𝑑𝑖𝑗(𝑃𝑖)𝜇𝑥𝑖𝑗𝑖∈𝐼𝑗∈𝐽 −τ1 + β
1

= 0  
Using (22) thus the following formulation is obtained. 
⟺ ∑ 𝑓

𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 ∑ ∑ 𝛾𝑐𝑑𝑖𝑗𝜇
𝑖
𝑥𝑖𝑗𝑖∈𝐼𝑗∈𝐽 −τ1 + β

1
= 0                                                                   (43) 

∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛 + ∑ ∑ 𝑐∈∈∈ 𝑑 𝜇 𝑥 − τ + β = 0, ∀𝜇 𝜖𝒰  
⟺ ∑ 𝑓

𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + max

𝜇∈𝒰 ,

∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇
𝑖
𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β

1
= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + max

| |
∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗 𝜇

𝑖
+ (𝑃𝑖)𝜇(𝜁)𝑖 𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β

1
= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇𝑖

𝑥𝑖𝑗 +𝑗∈𝐽 max
| |

∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗 (𝑃𝑖)𝜇(𝜁)𝑖 𝑥𝑖𝑗 −𝑗∈𝐽 τ1 + β
1

= 0   

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗�̅�

𝑖
𝑥𝑖𝑗 + ∑ ∑ 𝑐𝑑𝑖𝑗(𝑃𝑖)𝜇𝑥𝑖𝑗𝑖∈𝐼𝑗∈𝐽

2
𝑗∈𝐽 −τ1 + β

1
= 0  

Using (23) and (24) the following equation is obtained. 

⟺ ∑ 𝑓
𝑗
𝑦

𝑗𝑗∈𝐽 + ∑ 𝑝
𝑗
𝑛𝑗𝑗∈𝐽 + ∑ ∑ 𝑐𝑖∈𝐼 𝑑𝑖𝑗𝜇

𝑖
𝑥𝑖𝑗 + ∑ ∑ 𝑐𝑑𝑖𝑗(𝑃𝑖)𝜇𝑥𝑖𝑗

2

𝑖∈𝐼𝑗∈𝐽𝑗∈𝐽 −τ1 + β
1

= 0                                                      (49) 

 
Using the same techniques to constraint (28) and (32) as we do for obtaining the robust counterpart of constraint 
(27), with using ellipsoidal uncertainty set approach on (47) and (48) we have the equivalent form of (27) and (32) 
respectively as follows: 
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Change constraint (27), (28) and (32) with constraint 
(49), (50) and (51), so we have the Robust 
Counterpart for BEMSDPM with demand 
uncertainty using ellipsoidal uncertainty set 
approach as follows:  
 
min 𝜏        
min 𝜏   
s.t 
∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛∈ + ∑ ∑ 𝑐∈ 𝑑 �̅� 𝑥 +∈

∑ ∑ 𝑐𝑑 (𝑃 ) 𝑥∈∈ −τ + β = 0  

∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛∈ + 𝑊 ∑ ∑ �̅� 𝑥∈ +∈

𝑊 ∑ ∑ (𝑃 ) 𝑥∈∈ −τ + β = 0  

∑ 𝑥 + 𝑟 = 1, ∀𝑖 ∈ 𝐼∈                                               
𝑛 + 𝑡 = 𝑀𝑦 , ∀ 𝑗 ∈ 𝐽                                                  
∑ 𝑞 𝑥 + ∑ 𝛾∈ 𝑞 𝑥 − 𝑛 + 𝑢 = 0∈                                          
𝑥 + 𝑣 = 1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                             
𝑦 ∈ {0,1}, ∀ 𝑗 ∈ 𝐽                                                            
𝑛 ∈ 𝑍 , ∀ 𝑗 ∈ 𝐽                                                              
𝑟 ≥ 0, ∀𝑖 ∈ 𝐼                                                                
𝑡 , 𝑢 ≥ 0, ∀ 𝑗 ∈ 𝐽                                                           
𝑥 , 𝑠 , 𝑣 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽                                         
𝜏 , 𝜏 , β , β ≥ 0                                                           (52) 
    
Robust Counterpart Model (52) can we classify into 
Conic Quadratic Optimization. So, Robust Counter-
part can be guaranteed computationally tractable 
based on theorem in [15] and [21].  This means that 
Robust Counterpart Model (52) can be solved in 
polynomial time algorithm and the global optimal 
solution is guaranteed to be obtained. 
 
In the next section an example is presented. 
 
Example 
 
In this section numerical experiments are conducted 
for the BEMSDPM. In the numerical experiment, the 
location of health facilities will be determined in 
several predetermined location candidates. Then the 
number of emergency vehicles will be determined in 
the facilities built, as well as the proportion of 
requests served by the facility. Cases used are cases 
of secondary data sourced from journals written by 
Ndiaye and Alfares [18]. 
 
Ndiaye and Alfares [18] discuss the determination of 
the location of health facilities with requests that  

depend on summer and cold with case studies 
covering 10 locations of health facilities and 17 loca-
tions of demand. In this numerical experiment, the 
data used is demand data in the summer with three 
health facility location points and five demand 
location points. Besides, the data used is the distance 
of health facilities to the point of request, the cost of 
building facilities, and the average demand. 
 
The data used in this numerical experiment is as 
follows: the constructed facility is a health care 
facility.  In this case, is assumed the number of 
constructed facility location candidate is 3 location 
and demand points are 5 locations. The operational 
cost to allocation emergency vehicle in facility 𝑗 =
1,2,3 respectively are 110,000,56,000, 130,000 The 
unit of transportation cost is assumed 50.  The 
maximum number of concurrent demand at demand 
points 𝑖 = 1,2,3,4,5 respectively are 90,19,39,183,103. 
A significant amount in this problem is defined as the 
number of vehicles capable of meeting all requests 
that will be returned by all health service facilities. In 
this problem, assume that a fairly large number with 
a value. The maximal travel distance to measure 
service level from all medical facility is 100 distance 
unit. The weight because not served is 50. The 
constructed facility cost, the distance between health 
care facility and demand points, and average demand 
at demand points according to research [18] with data 
are used in the summer season with cost 115,700, 
125,000 and 270,000.   
 
For calculation the box uncertainty (44) and (45) also 
the ellipsoidal (47) and (48), use formulation (16) amd 
(17) thus the parameter 𝜇 , 𝑞 , ( 𝑃 ) , and (𝑃 )  are 
obtained as can be seen in Table 1 and Table 2.  
 
Table 1. The result   𝜇  and ( 𝑃 )  

𝑖 𝜇  𝜇  (𝑃 )  �̅�  
1 337 525 94 431 
2 337 337 0 337 
3 337 594 128,5 465,5 
4 337 542 102,5 439,5 
5 337 530 96,5 433,5 

 
Table 2. Value result 𝑞  and (𝑃 )  

𝑖 𝑞  𝑞  (𝑃 )  𝑞  
1 19 90 35,5 54,5 
2 19 19 0 19 
3 19 29 10 29 
4 19 183 82 101 
5 19 103 42 61 

 

∑ 𝑓 𝑦∈ + ∑ 𝑝 𝑛∈ + 𝑊 ∑ ∑ �̅� 𝑥∈ + 𝑊 ∑ ∑ (𝑃 ) 𝑥∈∈∈ −τ + β = 0                                                          (50) 

∑ 𝑞𝑖𝑥𝑖𝑗 +𝑖∈𝐼 ∑ (𝑃𝑖)𝜇𝑥𝑖𝑗

2

∈ − 𝑛 + 𝑢 = 0                                                                                                         (51) 
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The data has been obtained then substituted to a 
nominal bi-objective emergency medical service 
design problem (1)-(9). For calculation in this example 
for the box uncertainty (45) is chosen with, to show 
there is some variety of the data on the box 
uncertainty. 
 
The optimal solution can be seen in Table 3, where the 
results show that for the nominal model (1)-(9)., RC 
with box uncertainty set (46) and RC with ellipsoidal 
uncertainty set (52). The bi-objective functions are 
done using the Lexicographic Methods where the 
ranks objective functions based on priority (see [16]) 
and the integer binary variables are handled using 
Branch and Bound Methods (see [17]). 
 
The models show that facility is built at the same 
points i.e. location 𝑗 = 2. The optimal solution 
obtained also shows that emergency vehicles are 
allocated to health facilities on location 𝑗 = 2, but the 
difference in each model only the number of 
emergency vehicles at the facility.  
 
In terms of robustness, the robust formulation 
counterpart of the BEMSDPM uncertain optimiza-
tion problem is an optimization problem with a 
computationally tractable model. The model is a 
linear optimization and conic quadratic optimization. 
Some literature (see Ben-Tal and Nemirovskii [15] 
and Gorissen et al. [19]) stated that with this box 
selection and ellipsoidal uncertainty set, the uncer-
tain problem of BEMSDPM no longer contains semi-
infinite problem classes. Moreover, the RC for-
mulations as linear and conic quadratic optimization 
are needed to ensure the existence of global optimal 
solutions. So that the critical issue to obtain an RC 
formulation that is computationally tractable has 
been fulfilled. 
 
Furthermore, because this problem includes a set 
covering problem where all requests must be served, 
all requests are only served by health facilities at 
location 𝑗 = 2. Because demand at point 𝑖 can only be 
served by health facilities built at location 𝑗, then it 
will be shown that the calculation results fulfill the 
statement.  The total number of vehicles needed in 
location 𝑗 = 2 for the nominal model, RC with box and 
RC with ellipsoidal uncertainty are 434, 478 and 367 
vehicle. This number depends on the amount of  𝑀, 
the number of vehicles capable of meeting all requests 
that will be returned by all health service facilities. In 
this problem, assume that a fairly large number with 
a value 𝑀 ≥ 500 otherwise the model found the 
condition of no feasible point found for ILP subpro-
blem when solving the nominal model. 
 

Table 3. Optimal solution to the examples 

Decision 
variable 

Nominal 
model 

RC Model 
with box 
uncertainty 
set approach 
𝛾 = 10% 

RC Model 
with 
ellipsoidal 
uncertainty 
set approach 

𝑥 ,  0 0 0 
𝑥 ,  1 1 1 

𝑥 ,  0 0 0 
𝑥 ,  0 0 0 

𝑥 ,  1 1 1 

𝑥 ,  0 0 0 

𝑥 ,  0 0 0 

𝑥 ,  1 1 1 

𝑥 ,  0 0 0 

𝑥 ,  0 0 0 

𝑥 ,  1 1 1 

𝑥 ,  0 0 0 

𝑥 ,  0 0 0 
𝑥 ,  1 1 1 
𝑥 ,  0 0 0 

𝑛  0 0 0 

𝑛  434 478 367 

𝑛  0 0 0 
𝑦  0 0 0 

𝑦  1 1 1 

𝑦  0 0 0 

𝜏∗ 40.051.440,50 44.077.684,55 35.063.083,52 

𝜏∗ 24.482.600 26.951.959,99 20.733.927,33 

 
Conclusions 

 
In bi-objective emergency medical service design 
problem according to [1] has the demand parameter, 
where the demand parameter is uncertain. In 
handling the uncertain demand, Robust Optimiza-
tion approach is employed. By assuming the uncer-
tainty lies on a box and ellipsoidal uncertainty set. the 
computational tractability of the Robust Counterpart 
can be obtained, and the RC becomes Linear Pro-
gramming and Conic Quadratic Programming. This 
means that the RC is guaranteed to have an optimal 
global solution. As future research, the Model Emer-
gency Health Service Design Bi-Objective Problem 
proposed by Zhang and Jiang in [1] with uncertainty 
on demand can be developed with the new approach 
of  Robust Optimization Model using the new uncer-
tainty set approach such as the polyhedral uncer-
tainty set (see [19] and [20]). Then, Robust Optimi-
zation Model of Bi-Objective Problems Emergency 
Health Service Design with Request Uncertainty can 
be applied in determining the location of new health 
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centers with a case study of Kebumen District, and 
Central Java sees Mahanani,  and Rahardjo in [3]. 
 

Acknowledgement  
 

This research is funded by Penelitian Berbasis 
Kompetensi Kemenristekdikti for the year of 2018 
under contract number 1075/UN6.D/LT/2018 
 

References 
 
1. Zhang, Z.H., and Jiang, H., A Robust Counterpart 

Approach to The Bi-Objective Emergency Medical 
Service Design Problem, Applied Mathematical 
Modelling, 38(3), 2014, pp. 1033-1040. 

2. KBBS, Kementerian Pendidikan dan Kebudaya-
an, Kamus Besar Bahasa Indonesia, 2016. 
[Online]. Available: 
https://kbbi.kemdikbud.go.id. [Accessed 2 2 2018]. 

3. Mahanani, M. and Rahardjo, N., Penentuan Loka-
si Puskesmas Baru Menggunakan Analitycal 
Hierarchy Process (Studi Kasus Kabupaten Kebu-
men, Jawa Tengah), Jurnal Bumi Indonesia, 4(3), 
2015. 

4. Fasilitas Pelayanan Kesehatan, Peraturan Peme-
rintah Republik Indonesia no 47 tahun 2016, 
[Online]. Available: https://www.bphn.go.id/data/ 
documents/16pp047.pdf. [Accessed 15 2 2018]. 

5. Church, R. and ReVelle, C., The Maximal 
Covering Location Problem, Paper of The Regional 
Science Association, 32(1),1974, pp. 101-118. 

6. Toregas, C., Swain, R., Revelle, C.,  and Bergman, 
L., The Location of Emergency Service Facilities, 
Operation Research, 1363-1373, 1971. 

7. Gendreu, M., Laporte, G., and Semet, F., Solving 
an Ambulance Location Model by Tabu Search, 
Location Science, 5(2), 1997, pp. 75-88. 

8. Harewood, S. I., Emergency Ambulance Deploy-
ment in Barbados: A Multi-objective Approach, 
Journal of the Operational Research Society, 53(2), 
2002, pp. 185-102. 

9. Araz, C., Selim, H., and Ozkarahan, I., A Fuzzy 
Multi-objective Covering-Based Vehicle Location 
Model for Emergency Service, Computer & 
Operations Research, 34(3), 2007, pp. 705-726, 
2007.  

10. Almeida, L. A., Tralhao, L., Santos, L. and Rodri, 
A Multiobjective Approach to Locate Emergency  
 
 
 
 
 
 
 
 
 
 

Areas, Geographical Analysis, 4(1), 2009, pp. 9-29. 
11. Moghaddam, R. T., Memari,  P., and Talebi, E., A 

Bi-Objective Location-Allocation Problem of Tem-
porary Emergency Stations and Ambulance Rout-
ing in a Disaster Situation, in IEEE 4th Interna-
tional Conference on Optimization and Applica-
tions (ICOA), pp. 1-4. doi: 10.1109/ICOA. 2018. 
8370579, Mohammedia, Morocco, 2018. 

12. Bai, X., Two-Stage Multiobjective Optimization 
for Emergency Supplies Allocation Problem under 
Integrated Uncertainty, Mathematical Problems 
in Engineering, 2016,pp. 1-13.  

13. Beraldi, P., Bruni,  M. E., and Conforti, D.,  
Designing Robust Emergency Medical Service via 
Stochastic Programming, European Journal of 
Operation Research, 158(1), 2004, pp. 183-193. 

14. Beraldi, P. and Bruni, M.E., A Probabilistic Model 
Aplied to Emergency Service Vehicle Location, 
European Journal of Operation Research, 
196(1),2009, pp. 323-331. 

15. Bental, A. and Nemirovskii, A., Robust Optimiza-
tion – Methodology and Applications, Mathema-
tical Programming, 92(3), 2002, pp. 453-480. 

16. Rao, S. S., Enginering Optimization Theory and 
Practice, New Jersey: John Wiley & Sons, Inc., 
2009.  

17. Hiller, F., and Lieberman, G., Introduction to 
Operations Research, New York: McGraw-Hill., 
2010.  

18. Ndiaye, M., and Alfares, H., Modeling Health 
Care Facility Location for Moving Population 
Group, Computers and Operation Research, 35(7), 
2008, pp. 2154-2161. 

19. Gorissen, B., Yamkoglu, I. and Hertog, D. d., A 
Practical Guide to Robust Optimization, Omega., 
53, 2015, pp. 124-137. 

20. Hertog, D. d., Practical Robust Optimization: 
Lecture Notes LNMB Course, Tilburg University 
The Netherlands, Tilburg , 2015. 

21. Chaerani, D., and Roos, C. Handling Optimization 
under Uncertainty Problem Using Robust 
Counterpart Methodology, Jurnal Teknik Indus-
tri, 15(2), 2013, pp. 111-118. 

22. Chaerani, D., Roos, C. and Aman, A., The Robust 
Shortest Path Problem by Means of Robust Linear 
Optimization) in Operations Research Procee-
dings, Tilburg, 2004. 

23. Boyd, S., and Vandenberghe, L., Convex Optimi-
zation, Cambridge: Cambridge University Press, 
2004.  

 
 
 
 
 
 
 
 
 
 



Chaerani et al. / Robust Optimization Model / JTI, Vol. 20, No. 2, December 2018, pp. 95-104 

104 
 

 
 
 
 
 
 
            


