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Abstract: Airline revenue management (ARM) is one of emerging topics in transportation 
logistics areas. This paper discusses a problem in ARM which is dynamic pricing for two parallel 
flights owned by the same airline. We extended the existing model on Joint Pricing Model for 
Parallel Flights under passenger choice behavior in the literature. We generalized the model to 
consider multiple full-fare class instead of only single full-fare class. Consequently, we have to 
define the seat allocation for each fare class beforehand. We have combined the joint pricing 
model and the model of nested Expected Marginal Seat Revenue (EMSR) model. To solve this 
hybrid model, we have developed a dynamic programming-based algorithm. We also have 
conducted numerical experiments to show the behavior of our model. Our experiment results 
have showed that the expected revenue of both flights significantly induced by the proportion of 
the time flexible passengers and the number of allocated seat in each full-fare class. As 
managerial insights, our model has proved that there is a closed relationship between demand 
management, which is represented by the price of each fare class, and total expected revenue 
considering the passenger choice behavior. 
 
Keywords: Airline revenue management, parallel flights, dynamic pricing, passanger choice 
behavior, seat allocation. 
  

 
Introduction 

 
Airline industry is one of service industry that 
applies revenue management. It has limited capacity 
and time of product service offerings. Specifically, 
tickets offered by airlines have characteristics such 
as perishable products. They have no residual value 
if passed a certain period. That is, if the tickets un-
sold and the aircraft have to departure then revenue 
from unsold available seats will be lost. 
 
Airline revenue management (ARM) is one of 
emerging topics in transportation logistics areas. The 
objective of ARM is to maximize passenger revenue 
by selling the right seats to the right customer at the 
right time (Dunleavy [4]). Airlines need to make 
decisions on “when” and “how many” ticket sold in 
high or low price to maximize the revenue. 
 
In the literature, the models of ARM generally can 
be classified into two categories, static and dynamic 
models. The objective of the static model is to determine 
the number of seats that can be sold for each fare class. 
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In other the number of seats that can be sold for each 
fare class. In other words, to limit the availability of 
seats in different booking classes or “booking limits”. 
In this model, the decision has been made before the 
selling process begins and it will not be adjusted 
during the entire booking period. A prominent 
literature discussing static models is Belobaba [2]. 
This approach is known Expected Mar-ginal Seat 
Revenue (EMSR). Some other papers are Smith et 
al. [7] and Weatherford and Bodily [10].  
 
In the dynamic models, the booking control policy is 
not determined at the beginning of the booking 
period. The inventory seat allocation control should 
be dynamically reviewed over the entire booking 
period in order to optimize the expected revenue. 
Some papers discuss such problems including Lee 
and Hersh [6] and Subramanian, et al. [8] for 
discrete-time booking period and Feng and Xiao [5] 
for continuous-time booking model.  
 
In more advanced models, some papers discuss the 
situation where an airline may open more than one 
flight in a day for “busy” routes. The airline opens 
some flights in the same departure date with 
different time schedule. These joint flights are called 
multiple parallel flights. The objective is to maximize 
the total revenue of the multiple parallel flights. In 
the multiple parallel flights, the airline should know 
the behavior of passengers in buying tickets. Some 
passengers may choose airlines not only based on 
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price but also some other preferences such as 
schedules, aircraft types and in-flight service. In the 
point of view passengers, the seat availability of 
multiple parallel flights can be substituted each 
other. To face this situation, the airline should 
manage demand well. When making adjustment 
ticket fares over the booking period, the airline 
should consider the choice behavior of passengers 
among different flights. 
 
In general, based on their preference, there are two 
types of passengers; those travel for either business 
purposes or leisure purposes. The first group usually 
has strong time preferences. They tend to value 
booking or cancellation flexibility. They are relatively 
price-insensitive since, in most cases, their travel 
expenses are not by themselves. On the other hand, 
the second group, leisure passengers, tends to be 
more sensitive to price since they pay the tickets by 
their own budget (Tallury and van Ryzin, [9]).  
 
Specifically, based on their choice behavior, some 
researchers have categorized passengers into some 
groups. Zang and Cooper [12] have classified them 
into two groups, high fare and low fare passengers. 
Moreover, in the context of two parallel flights (e.g. 
flight A and flight B), Xiao et al. [11] classified 
potential passengers into three types. Passengers’ 
type 1 and 2 are time-sensitive passengers. They buy 
only the ticket that is consistence with their 
departure-time requirements which are either flight 
A or flight B, respectively. They will never turn to 
buy the other flight even if lower price offered. In 
reality, most business travelers belong to this type. 
Passenger type 3 is price-sensitive passengers, which 
prefer to choose lower ticket price and do not 
consider the departure time. In reality, most leisure 
passengers belong to this type. 
 
There are some papers discussing joint pricing for 
two parallel flights owned by the same airline. Zang 
and Cooper [12] proposed model in dynamic seat 
allocation control considering passenger choice 
behavior. Xiao et al. [11] also proposed dynamic 
pricing model for parallel flights problem. Moreover, 
Chen et al. [3] proposed model dynamic program-
ming to optimize booking policy under seat allocation 
problem for two and multiple flight. However, none 
of these papers uses EMSR (Expected Marginal Seat 
Revenue) of Belobaba [2] which is commonly used in 
airline industry. We attempt to fulfill this research 
gap. 
 
In our proposed model, we adopted EMSR approach 
to determine the seat allocation and booking level for 
each fare class in the cases of two parallel flights seat 
for a single-leg problem. We enhanced the EMSR 
model of Belobaba [2] to combine with the joint 

dynamic pricing for parallel flights model of Xiao et 
al. [11]. The objective is to maximize total expected 
revenue of both flights by optimize seat allocation in 
each fare class.  
 
First, we classified passengers into three types based 
on their choice behavior as of Xiao et al. [11]. We 
then determined seat allocation and booking level in 
each fare class using EMSR model. We finally 
applied dynamic programming to maximize the 
expected revenue of both flights. 

 
Methods 

 
Basic Models 
 
Belobaba [2] developed nested EMSR approach 
model. This model is used to protect allocation seats 
of the higher fare level from the lower fare level. 
Using historical data, airlines can define demand 
level of each full-fare class. It is assumed that they 
have normal distribution with certain mean and 
standard deviation. 
 
We adopted nested EMSR model to determine the 
seats allocation and booking level for each full-fare 
class. After defining the booking limits for each full-
fare class, we then modified the model of  Xiao et al. 
[11] on  joint dynamic pricing to calculate the 
maximize expected total revenue of both flights. 
These two basic models will be explained in the next 
sub sections. 
 
Seat Allocation Control Model of Belobaba [2] 
 
There are two approaches to seat allocation problem, 
nested and non-nested allocations. Bazargan [1] has 
explained that in the nested allocation model, each 
fare class is assigned a booking limit. The booking 
limits are the total number of seats assigned to that 
fare class plus the sum of all seat allocations to its 
lower fare classes. 

 

 
 

 
 

Figure 1. Nested and non nested seat allocations 
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In non-nested model, distinct numbers of seats are 
exclusively assigned to each fare class. The sum of 
this allocation adds up to the total aircraft seat 
capacity. Figure 1 shows the visualization of these 
two approaches. 
 
The EMSR method of Belobaba [2] generates the 
nested protection level for different class fare. This 
method proposed that in a nested seat allocation, the 
number of seats which should be protected for higher 
fare class i, over class j (lower class) is: 

( ) ( ) j
i
jii

i
j fSPfSEMSR == .                                         (1) 

The protected number of seats for the (n-1) fare class 
is determined by: 
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The average fare levels for the two classes of i and j 
are denote by if  and  i

jj Sf . is the number of seats 

that should be protected for higher class i over class 
j, thus ( )i

ji SP  is the probability of selling S or more 
seats in fare class i.  
 
The booking limit or the number of seat available for 
each class i, represented by BLi, is determined by 
subtracting the number of seats protected for the 
higher fare class, 1−Π i , from the total aircraft seat 
capacity, C. Therefore: 

1−Π−= ii CBL                                                                 (3) 

With the booking limit for the highest fare class is:  
CBL =1                                                                            (4) 

 The nested protection for fare class i is therefore the 
different between the booking limits for that fare and 
its lower fare class as follows: 

1+−= iii BLBLNP                                                            (5) 
Where NPi is the nested seat protection levels for 
fare class i.  
 
Joint Dynamic Pricing by Xiao, et al. [11] 
 
In this section we will elaborate the model of Xiao et 
al. [11] as the main reference of our model. This 
model considers a situation where there are only two 
flights (flight A and B) owned by a same airline and 
scheduled at different times. The objective is to 
maximize the total revenue of both flights during the 
booking period [0,T]. 
 
As a nature of dynamic pricing, the ticket can be sold 
at k different prices. P is denoted as feasible price, in 

which P = {p1,p2,…,pk} where p1 > p2 >…> pk. p1 is a 
full price whereas pk is the lowest possible fare. 
 
There are three types of passengers called Type I, 
Type II, Type III passengers, respectively. Type I 
(Type II) passengers select only flight A (or B), 
because they are time-sensitive passengers. Mean-
while Type III passengers will choose the flight with 
a lower price.   
 
The fractions of three passenger types are αi(∈ [0,1]), 
i = 1,2,3, Σαi = 1 The potential passenger arrival 
process follows Poisson with rateλ . Let iλ  = iα .λ , 
(i = 1, 2, 3) denotes the respective arrival rates of 
three types of passengers.  
 
The authors assumed that the choice behavior of 
passengers is only applied when the perceive value of 
passengers towards to the ticket is greater than the 
selling price. If the selling prices of both flights are 
higher than the perceive value, the passenger will 
not buy the ticket.  
 
When the potential passenger arrived, they make a 
choice based on the current offered price by flight A 
and B (pA, pB).  If passenger belong to type I or II, 
then they will choose flight A or B if X ≥ pA, (X C pB).  
X is assume as the perceive value of each passenger. 
If Type III passengers then they will choose the 
flight with a lower price if X ≥ (pA Λ pB). In case pA = 
pB and X ≥ pA, the passenger prefers choose flight A 
with probability β(∈[0,1]) and prefers flight B with 
probability (1-β).  
 
Thus, the probability of type I passenger to buy 
ticket flight A is ( ) ( )AA pFpF −= 1 ; the probability 
of type II passenger to buy ticket flight B is 
( ) ( )BB pFpF −=1 ;. The probability of type III 

passenger to buy ticket either flight A or B is 
( )BA ppF ∧ ; The effective arrival rates of flight A 

and B are then described as follows: 

{ } { }( ) )(231 Apppp pFII
BABA <= ++ λβλλ  and 

{ } { }( ) )()1( 332 Bpppp pFII
BABA <= +−+ λλβλ                  (6) 

Where I{condition} is an indicator function with value 1 if 
condition is fulfilled, and 0 if otherwise. 
 
This model assumes that the airline faces a Markov 
decision process. The airline seeks the minimization 
of the total expected revenue denoted by Rt(n1,n2), 
over remaining horizon [t,T] where n1 (0≤n1≤C1) and 
n2 (0≤n2≤C2) represent the number of remaining 
seats of each flight respectively at the time t  [0,T]. 
The airline then will dynamically adjust the selling 
prices of the parallel flights in order to maximize 
revenue.  
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Supposed that the entire booking horizon [0,T] were 
divided into small intervals with equal length (Δt). 
Each of which will be called a period. It is assumed 
that there is no more than one passenger arrives 
over a period (Δt = 1). If λ represents the probability 
of arrival potential passenger in each period, thus, 
the value is 0 ≤ λ ≤ 1. At the same time, the potential 
passenger will buy based on their preference. If the 
passenger decides to buy a ticket, then the airline 
will collect the corresponding revenue and consume 
one unit of seat; otherwise the passenger losses. 
 
The booking horizon [0,T] can be divided into two 
main general periods: period t < T and period T. 
Period T is defined the last period before the 
departure time. Since, the airline can only sell at 
most one unit of seat; thus, there may be remaining 
seats with no salvage value in the period T. 
 
At the beginning of each period (in period t<T or in 
period T), the airline management needs to decide 
the optimal prices of the flights. The decision will be 
based on the forecasting of future demand and the 
current available seats.  

 
Based on the number of available seat (n1,n2), there 
are four cases considered as follows. 
Case 1 if the tickets in both flights were sold out  

(n1 = n2 = 0). 
Case 2 if flight A has sold out the ticket, and flight 

B have remaining seats (n1 = 0;  
n2 > 0). The decision variable is flight B’s
selling price. 

Case 3 if flight B has sold out the ticket while 
flight A have a number of unsold seats  
(n1 > 0; n2 = 0). The decision variable is 
flight A’s selling price. 

Case 4 if both tickets are still available  
(n1 > 0, n2 > 0).  A joint pricing decision is 
required. 

 
Enhanced Model 
 
In this paper, we will explain our enhancement to 
the basic model of   Xiao et al. [11]. Instead of only 
single full-fare class, we consider multiple full-fare 
class. Xiao et al. [11] only proposed model for an 
opened single fare class with k different prices, 
meanwhile we proposed m fare classes. Each of 
which, we consider k different prices.  
 
Again, supposed that there two flights, A and B, are 
the parallel flights owned by the same airline 
company. It is assumed that that both flights have 
the same seat capacity (Ca = Cb). We also assume 
that passengers are willing to pay more expensive 
when they booked the ticket lately. Thus, the airline 

set m different full prices and the fare is higher if it is 
closed to the departure time.  
 
For both flights, the airline set ma and mb full-fare 
classes to open for flight A and B, respectively. Let ia 
and ib be the indexes of opened class for flight A and 
B respectively [(ia ∈1..ma) and (ib ∈1..mb)]. The full-
fare of flight A is represented by FFia and FFib 

denotes full-fare of flight B. 
 
Supposed that there are three full-fare classes for 
both flights (ma = mb = 3). Let FF1 be the highest full-
fare class and FF2 be the lowest one. Thus, for both 
flights, FF1 > FF2 > FF3.  
 
For each full-fare class, we set k alternative prices. k 
is the number of different prices in each class ia and 
ib. Let P = {p1,p2,…,pk}  be the set of alternative prices 
where p1 is the full price and pk is the lowest possible 
price. Without loss any generalization, we define 
that p1 > p2 >…> pk. If A

iaP  and B
ibP  represent the 

price of class i opened in Flight A and B then A
iaP = 

(P x FFia) and B
ibP = (P x FFib). 

 
The probability of type I passenger to buy ticket 
flight A in class ia is ( ) ( )A

ia
A

ia PFPF −= 1 ; the 
probability of type II passenger to buy ticket flight B 
in class ib is ( ) ( )B

ib
B

ib PFPF −= 1 . The probability of 
type III passenger to buy ticket flight A or B in class 
ia and ib is ( )B

ib
A

ia PPF ∧ . 
 
Thus, the effective arrival rates of flight A and B are 
as follows 

{ } { }( ) )(231
A

iaPPPP PFII B
ib

A
ia

B
ib

A
ia <= ++ λβλλ  and 

{ } { }( ) )()1( 332
B

ibPPPP PFII B
ib

A
ia

B
ib

A
ia <= +−+ λλβλ           (7) 

 
Where I{condition} is an indicator function with value 1 if 
condition holds, and 0 if otherwise. The joint pricing 
model at period T if (n1 > 0, n2 > 0) is: 
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The joint pricing model at the period t <T, if (n1>0, 
n2>0) is  
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Different from the single fare class model of Xiao et 
al. [11] where the seat allocation is a given para-
meter, in multiple fare classes, we need to previously 
determine the seat allocation for each fare class. To 
solve this issue, we previously used the nested 
EMSR approach model of Belobaba [2]. The output 
of this model is the seat allocation for each class of 
Flight A and B. Similar to Xiao et al. [11], we also 
used backward dynamic program-ming to solve the 
problems. 
 

Result and Discussion 
 
Seat Allocation Control 
 
We used the following parameter in the numerical 
experiments: There are 30 seats available f discount-
ed prices (k=6). So the feasible set price is or each 
flight (Ca = Cb = 30 seats), and both flights opened 3 
full-fare classes. For each of which, the ticket offered 
in a full price and five P = (1, 0.9, 0.8, 0.7, 0.6, 0.5). 
The probabilities that a potential passenger’s per-
ceive value of above set selling price are (0.3, 0.4, 
0.48, 0.58, 0.7 and 0.85) respectively. We have 
divided the entire horizon into T = 100, and the 
arrival rate of potential passenger is λ = 0.75.  
 
We will discuss the model in three conditions. 
Condition 1: 
In condition 1, we assume that the price of each 
classes is same for both flights; (FFia = FFib for all i), 
and also under the same demand distribution. This 
means that Flight A and B have equal numbers of 
seat allocation in each fare class. It was sound un-
realistic but we can use this condition in order to 
compare to other conditions. The details of para-
meter in condition 1 are shown in Table 1. 
 
Based on the nested EMSR approach, we determine 
seat allocation for each fare class. The seat allocation 
of each fare class is shown in Table 1. Figure 2 shows 
the visualization of EMSR for condition 1. 
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Figure 2. EMSR for flights A and B in condition 1 

Table 1. Parameter and seat allocation of the both flights 
for condition 1  

Flight A & B 
Capacity (seat) 30 
Class (FFi) FF1 FF2 FF3 
Fare ($) 250 200 150 
Demand distribution Mean 8 10 12 
 SD 1.5 1.2 1 
Seat allocation 7 10 13 
 
Condition 2: 
In condition 2, we assume that the prices of each 
class are same for both flights. However, they have 
different demand distribution. This means that 
Flight A and B have different number of seat 
allocation in each fare class. The parameter and seat 
allocation for this condition are shown in Table 2. We 
may see that seat allocation of flight A is similar to 
that of in condition 1 
 
Condition 3: 
In condition 3, we assume the fares of each class in 
flight A and B are different. We assume that the 
price of flight B is more expensive than that of flight 
A.  With different demand distribution, the seat allo-
cation of each class can be seen in Table 3. The 
EMSR’s visualization for flight B is shown in Figure 4.  
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Figure 3. EMSR for Flight B in condition 2 
 
Table 2. Parameter and seat allocation of flight A & B for 
condition 2 

Flight A 

Class Fare ($) Demand dist Seat 
allocation Mean SD 

FF1 250 8 1.5 7 
FF2 200 10 1.2 10 
FF3 150 12 1.0 13 

Flight B 

Class Fare ($) Demand dist Seat 
allocation Mean SD 

FF1 250 6 1.5 4 
FF2 200 10 1.2 10 
FF3 150 14 1.0 16 
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Table 3. Parameter and seat allocation of flight A & B for 
condition 3 

Flight A 

Class Fare ($) Demand dist Seat 
allocation Mean SD 

FF1 250 8 1.5 7 
FF2 200 10 1.2 10 
FF3 150 12 1.0 13 

Flight B 

Class Fare ($) Demand dist Seat 
allocation Mean SD 

FF1 315 6 1.5 4 
FF2 250 9 1.2 9 
FF3 190 12 1.0 17 
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Figure 4. EMSR for Flight B in condition 3 

 
Joint Pricing 
 
After the seat allocation of each fare class has been 
determined, we then calculated the expected revenue 
of the joint flights under some different circum-
stances. First, the numerical experiments using the 
different arrival rates of Type III passengers (α3) 
under the fixed probability of passengers prefer 
choosing flight A (β). 

 
Different Values of α3 

 
We computed the optimal total revenue under 
different values of α3 from 0 to 1 and keeping the β’s 
value in 0.5. We set α1 = α2, so the values of α1 & α2 
are equal to  ( )

2
1 3α−  . The expected revenue of flights 

is shown in Table 4, 5, and 6; respectively for 
Conditions 1, 2, and 3. We have compared the 
expected revenues of them. They are represented in 
Figure 5. 
 
The results showed that proportion of type III 
passengers have influenced the total expected 
revenue of both flights. The higher value of α3, the 
higher total expected revenue of joint flights. This 
implies that airline management needs to notice 
when inflexible time passengers become time flexible 
passengers, they need to manage the price of both 
flights in order to control their demand. 

Table 4. The expected revenue of flights under different 
value of α3 in condition 1 

Condition 1 
α3 α1 = α2 Ra Rb Rtotal 
0.0 0.50 2973.9165 2973.9165 5947.8330 
0.1 0.45 2996.3259 2996.3259 5992.6519 
0.2 0.40 3011.6638 3011.6638 6023.3276 
0.3 0.35 3021.7126 3021.7126 6043.4253 
0.4 0.30 3028.3787 3028.3809 6056.7595 
0.5 0.25 3033.0530 3032.9888 6066.0417 
0.6 0.20 3036.4031 3036.4031 6072.8062 
0.7 0.15 3039.1101 3038.8000 6077.9102 
0.8 0.10 3040.9736 3040.9563 6081.9299 
0.9 0.05 3042.6343 3042.6558 6085.2900 

 
 
Table 5.  The expected revenue of flights under different 
value of α3 in condition 2 

Condition 2 
α3 α1 = α2 Ra Rb Rtotal 
0.0 0.50 2973.917 2806.605 5780.522 
0.1 0.45 2987.921 2835.062 5822.983 
0.2 0.40 3002.359 2850.854 5853.214 
0.3 0.35 3015.547 2858.305 5873.853 
0.4 0.30 3029.331 2858.818 5888.149 
0.5 0.25 3042.320 2856.173 5898.493 
0.6 0.20 3055.663 2850.617 5906.279 
0.7 0.15 3068.612 2843.718 5912.330 
0.8 0.10 3081.812 2835.434 5917.245 
0.9 0.05 3098.275 2823.265 5921.540 

 
 
Table 6. The expected revenue of flights under different 
value of α3 in condition 3 

Condition 3 
α3 α1 = α2 Ra Rb Rtotal 
0.0 0.50 2973.917 3500.278 6474.194 
0.1 0.45 3050.730 3457.117 6507.846 
0.2 0.40 3047.723 3493.441 6541.164 
0.3 0.35 3020.185 3549.774 6569.959 
0.4 0.30 2985.979 3607.504 6593.483 
0.5 0.25 2953.355 3658.108 6611.463 
0.6 0.20 2915.051 3709.565 6624.616 
0.7 0.15 2889.885 3745.612 6635.497 
0.8 0.10 2868.631 3776.945 6645.576 
0.9 0.05 2840.368 3815.704 6656.072 
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Specifically, by comparing the results of conditions 1 
and 2, we may see that the total expected revenue of 
condition 1 is higher than that of condition 2. This is 
due to different demand distribution in each class of 
flights A and B. 
 
We may make a conclusion that the seat allocation 
distribution of joint flights has significantly contri-
buted to the total revenue received. Thus, in mana-
gerial perspective, the airline management should 
optimize the seat allocation management of the joint 
flights. Our proposed model can be used for this 
purpose.  
 
Different Values of β and Small α3 
 
We set β values from 0 to 1, whereas α3 = 0.1, and α1 
= α2 =0.45 are constant. We choose small proportion 
for leisure passengers (α3) to represent a condition 
when time sensitive passengers are more dominant 
than price sensitive passengers. When selling prices 
of both flights are identical, the larger value of β 
implies that type III passengers prefer choose flight 
A. As a result, for all conditions, the expected 
revenue of flight A increases.  
 
The total expected revenue under different values of 
β in condition 1 shown in Table 7 and Figure 6 has 
formed a curve shape. The highest revenue occurred 
when β = 0.5, which is situation where both flights 
have identical price as well as the seat allocation.  
 
Table 7. Rtotal under different value of β in condition 1 

Condition 1 
β Ra Rb Rtotal 

0.0 2908.828 3082.3762 5991.2041 
0.1 2925.605 3066.0991 5991.7043 
0.2 2942.968 3049.1401 5992.1082 
0.3 2960.701 3031.7056 5992.4063 
0.4 2978.545 3014.0449 5992.5903 
0.5 2996.326 2996.3259 5992.6519 
0.6 3014.049 2978.5417 5992.5903 
0.7 3031.706 2960.7007 5992.4063 
0.8 3049.140 2942.9680 5992.1082 
0.9 3066.101 2925.6030 5991.7041 
1.0 3082.375 2908.8291 5991.2039 
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Figure 6. Total revenue in differentvalues of β in condition 1 

In condition 2, which is a situation when flights A 
and B have the same price but in different demand, 
the results showed that the higher β the higher total 
expected revenue. 
 
Different situation was occurred in condition 3. In 
this condition, we have set that the price of flight B is 
higher than that of flight A. The result is that the 
higher β the lower total expected revenue. 
 
These two experiments results imply that the airline 
will gain higher revenue if they set price of flight A 
higher than flight B, when the time flexible 
passenger prefers to choose flight A. Tables 8 and 9 
represent total expected revenue of condition 2 and 3 
under different values of β. Figures 7 and 8 
represent these two conditions in graphics respect-
tively.  
 
Table 8. Rtotal under different value of β in condition 2 

Condition 2 
β Ra Rb Rtotal 

0.0 2912.733 2903.667 5816.400 
0.1 2926.528 2891.314 5817.843 
0.2 2940.864 2878.382 5819.245 
0.3 2956.030 2864.555 5820.584 
0.4 2971.646 2850.190 5821.836 
0.5 2987.921 2835.062 5822.983 
0.6 3004.570 2819.433 5824.003 
0.7 3021.248 2803.638 5824.886 
0.8 3037.945 2787.682 5825.627 
0.9 3054.552 2771.668 5826.220 
1.0 3071.302 2755.379 5826.682 

 
Table 9. Rtotal under different value of β in condition 3 

Condition 3 
β Ra Rb Rtotal 

0.0 3048.474 3459.577 6508.051 
0.1 3049.391 3458.575 6507.966 
0.2 3049.742 3458.170 6507.912 
0.3 3050.056 3457.823 6507.879 
0.4 3050.388 3457.474 6507.861 
0.5 3050.730 3457.117 6507.846 
0.6 3050.682 3457.155 6507.836 
0.7 3050.897 3456.935 6507.831 
0.8 3051.233 3456.595 6507.828 
0.9 3051.331 3456.496 6507.827 
1.0 3051.287 3456.540 6507.827 
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Figure 7. Total revenue in different values of β in condition 2 
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Figure 8. Total revenue in different values of β in condition 3 

 
Conclusion 

 
In this paper, we have extended the model of Xiao et 
al. [11] of Joint Pricing Model for Parallel Flights. 
Instead of single full-fare class, we have considered 
the cases of multiple full-fare class. In this enhance-
ment, we have employed the model of nested 
Expected Marginal Seat Revenue (EMSR) approach 
to previously define the seat allocation for each fare 
class. We have also modified the dynamic program-
ming algorithm used by Xiao et al. [11]. Some 
numerical experiments have been conducted. Our 
experiment results has showed that the total 
expected revenue of both flights induced by propor-
tion of time-flexible passengers (type III passengers) 
and the number of allocated seat in each full-fare 
class.  
 
When the number of time-flexible passengers tends 
to increase, the airline has to set the price, in order to 
control the allocation of demand between two flights. 
The airline can gain higher revenue by set the price 
of full-fare class of one flight higher than another.  
 
In general, we may conclude that our proposed 
model has shown that the closed relationships 
between demand management, which is represented 
by the price of each fare class, and total expected 
revenue considering the passenger choice behavior. 
 
In this paper, we have not yet considered overbook-
ing, cancellation and no show problems happened in 
reality condition. The future research of parallel 
flights problem can be considered in those situation. 
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