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ABSTRACT 
 

This article provides a step by step process of executing analytical or computer based Design for Six 
Sigma using a Sliding Door project as an example. It comprises of identification of Voice Of the Customer 
(VOC), transformation of VOC to what it is called Critical To Quality characteristics (CTQs), modeling of 
system transfers function, optimal and robust solutions, and tolerance design approach 
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1. INTRODUCTION 

 
The goal in product design or business process engineering is to create products or processes 

that are insensitive to the sources of variation that inhibit their intended function. Design phase in 
the product development process is always crucial activity since most downstream production and 
quality problems are locked during that activity. As a consequence, a successful DMAIC (define, 
measure, analyze, improve, control) Six Sigma programs for operations or production evolve into 
what is now known as design for Six Sigma (DfSS) for product or process development. 

As a contrast to Six Sigma program whose steps are known as DMAIC, DFSS has different 
names in its steps, e.g. 4D (Define, Design, Develop, Demonstrate), (DCOV Design, Characterize, 
Optimize, Verify), DMADV (define, measure, analyze, design, verify), IDOV (Identify, Design 
Optimize, Validate), DCCDI (define, customer, concept, design, implementation), etc. However, 
those different step names are essentially the same. 

DfSS integrates Marketing, Engineering and Production information into the design world. 
DfSS focuses on preventing defects by optimizing a transformation of what is wanted and 
perceived in the customer domain to what can be produced in engineering and the process domain. 
Therefore, DFSS starts by defining a problem in the customer domain to understand the voice of 
the customer (VOC) and the customer’s use of the products or transactions. Models of the problem 
related system must then be developed in the engineering or process domain with the help of 
functional Parameter Diagram and Quality Function Deployment (QFD)-like techniques. The 
model must be a translation of the voice of the customer into a system that can be engineered. 
Understanding design variable interactions and sensitivity of system performances relative to 
system variables are the ultimate goal of this step.  

Having understood the behaviour of the system, the next steps are to find optimal and robust 
solutions and then verify the solutions in customer and production conditions. Typically, DfSS 
deals with multiple objectives in the optimization step and then stack-up tolerance analysis and 
degradation or key life testing in the verification step. Robustness and optimal solutions will 
ensure the product meets the customer’s intended use and is delivered on time and at a lower cost--
eventually improving the company’s profitability. 
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2. ROLE OF COMPUTER-BASED EXPERIMENTATION IN DfSS 
 
Complexity of the product or process and the fast pace schedule to bring product to the 

market demands DfSS to take the advantages of the computer based analysis. Computer based 
analysis needs analytical, either mathematical or simulation, models called Transfer Function and 
analytical optimization. Transfer function can be derived from 1st principle of physics, engineering 
drawing of stack-up processes, Finite Element Method based simulation such as Computer Aided 
Engineering (CAE), regression analysis of empirical or observational data, and/or response surface 
from computer experimental designs. When the analytical models do not include comprehensive 
Noise Factors such as piece-to-piece variation, changes in dimension or strength over time/cycle, 
customer usage and duty cycle, external operating environment, and internal operating 
environment /interaction with neighbouring subsystems, they can be represented by the variability 
of the existing variables or parameters in the models.  

More complete understanding of transfer functions eliminates the waste of over-design and 
cost of under-design, resulting in efficient designs that satisfy customers. To have complete 
understanding Transfer Function needs sequential efforts from a model that is still under 
development requires further correlation before usage to a model that can be used as the sole 
determiner of Sign Off of a product or process release.  

Analytical optimizations for functional and multiple objective problems rely heavily on 
computer based experimentation. The goal of computer based experimentation is multiple, one of 
them is to develop simple approximation that is fast-to-compute and accurate enough within a 
certain design space, especially for time consuming CAE models. Computer based experiment 
logistics are often straightforward so that relatively large number of runs may be feasible and 
parameters can be adjusted in software. A large number of runs allow variable sampling over 
many levels instead of just fewer runs with limited variable sampling, e.g. 2 or 3 in hardware 
experimentation. Many level sampling can capture high order and nonlinear models. As responses 
from computer are deterministic, there is no random error and replication and randomization do 
not have value. Therefore, flexible alternatives to standard arrays, e.g., Uniform Design and Latin 
Hypercube Designs are suitable to running computer based experimentation.  

Here, we illustrate a step by step process of executing analytical or computer based DFSS. 
This includes identifying voice of the customer, translating VOC to critical to quality 
characteristics (CTQ) using QFD, modeling system transfers function using engineering drawing, 
finding optimal and robust solutions using graphical approach and mathematical programming 
based on computer experimentation, and finally indicating tolerance design approach.  As a case 
study we show how to find optimal and robust designs of a sliding door. Sliding door project is 
chosen with the hope that this example can reach wider readers who have different backgrounds 
and business processes. We will show that we can run this study using available commercial 
package software such as MS Excel, Minitab, Crystal Ball and DOE PRO XL. This step-by-step 
example can be easily adapted to different product design and business process engineering, 
included transactional products and processes. The essential difference between engineering and 
transactional processes is that natural laws, such as conservation of energy or mass, govern 
engineering and manufacturing processes, but man-made laws, such as regulations, govern 
transactional processes. 
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3. IDENTIFYING VOC 
 

Side and top views of a sliding door consists of a sliding panel, a roller and a track is shown 
in Figure 1.  The following are what customers want: 

 

Top ViewTop View

 
Figure 1. Side and Top Views of A Sliding Door. 

 
¾ Good value for money and image. 
¾ Reliable/Durable design for various material and condition. 
¾ Low noise and rattle level. 
¾ Ergonomic features, easy to use with minimum effort to open. 
¾ Safety features to prevent from accidental operations. 
 
Customers complained about the noise and rattle levels of the existing door 
 
3.1 Translating VOC to CTQ 
 

QFD in the form of house of quality translates VOC to CTQ as shown in Figure 2. The house 
of quality shows that noise and rattle levels are related to the clearance between track and roller of 
the door. When the clearance is too big, the rattle level will increase, but when it is too tight, the 
noise level will increase.  

The detail functional relation between design variables or parameters (Signal, Control and 
Noise Factors) and the system performance or CTQ, i.e. Clearance is captured in the Parameter-
Diagram (see Figure 3). 
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Figure 2. Quality Function Deployment of A Sliding Door. 
 
 

• Roller angle (theta)
• Roller distance (c)
• Door height (d)
• Track length and width (a and b)

• Manufacturing variability
• Installation variability
• Climate variability

CTQ:  

Clearance = 0.8

Control factors

Noise factors

Sliding Door 
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• Torque
• Door Size
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• Climate variability
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Figure 3. Parameter Diagram of A Sliding Door. 
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The base line design, i.e. a = 0.3, b = 1, c = 9, d = 13 and theta = 600 gives Clearance = 1.6 
with standard deviation = 2.9. The objective to get a low noise and rattle level is Clearance = 0.8. 

 
4. MODELING SYSTEM TRANSFER FUNCTION 

 
Let P be the set of control factors (a, b, c, d and theta), M be the signal factor (torque, door 

size), Z be the set of observable noise factors (variability of a, b, c , d and theta). The signal can be 
considered as a part of noise factors, if it is fixed at one value. Let Y be the system performances, 
i.e. Clr. Assume the system follows an additive noise model, i.e. the location-dispersion or mean-
variance model as follows: 

   

 (1) 
 

f(.) is the deterministic performance mean derived from the 1st principle of Physics, engineering 
drawings, regression or response surface methods. ε is the random error caused by the 
uncontrollable noise factors whose expectation and variance are E (ε) = 0 and var (ε) = σ2(P,Z,M), 
respectively. In many cases, the variation of ε (or the performance variability) is close enough to 
the variance of linear approximation of Y since the linear approximation of Y is around the small 
area between its mean and variance.  

As the computer experimentation output is deterministic the performance variability, i.e. 
standard deviation of Clr, can be estimated through Taylor Series expansion of f and the variance 
of each design variable at a neighborhood of a certain fixed value of the design variables, x0 : 

 

 
 (2) 
 
 

For x is a set of design variables or parameters or factors. Approximation of σy is “good” when y is 
approximately linear in a 2σ- - 3σ neighborhood of x0.  

Robust design can be obtained by minimizing the performance variability, i.e. σ2
y. This can 

be done either by either minimizing the sensitivities, i.e. derivatives of f(x), or minimizing 
variability of design variables, i.e. σx1, …, σxn. Optimal design can be obtained by selecting nominal 
values of other certain design variables, i.e. x1, …, xn, to bring the system performance mean to its 
target. Minimizing design variables or parameter sigma by improving process capability is mainly 
part of DMAIC Six Sigma. Minimizing the sensitivities by selecting nominal values of design 
variables, i.e. x1, …, xn, is mainly part of DFSS.  

Following mean-variance model above and applying Vector Loop Technique for stack-up 
analysis, we can derive the transfer function of the transformation from Radial to of Cartesians of 
Clearance and its variance as shown in Figure 4. 
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Using Vector loop Technique, the Clearance is

Clr = d –c – 2(b + a/tan(θ)) with its variance derived from 
first order Taylor series:

σ2(Clr) = σ2(d) + σ2(c) + 4 σ2(b) + 4σ2(a)/tan2(θ) +4a2

Secan2(θ)/ tan2(θ) σ2(θ)

2 a

a b

θ
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c
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Figure 4. Transfer Function of A Sliding Door Derived From Vector Loop Technique 

 
4.1. Finding Optimal and Robust Design 

 
Here, we will find the best setting of certain design variables that can minimize performance 

variability and of others than already chosen design variables that can adjust performance mean to 
target. This kind of approach was originated by Dr. Genichi Taguchi. The following is the steps to 
execute this approach. 
 
DOE 

Choosing design space and number of levels or settings of the design variables in 
experimental design need to include engineering and production knowledge (see Table 1). The 
baseline and benchmark values should also be considered in choosing the design space. To explore 
high order interaction effect or the nonlinearity relationship between a specific design variable and 
its system performance we need to choose more number of levels of that variable as for variables a 
and theta The standard deviation of each design variables should be obtained from a stable and 
under control process.  
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Table 1. Design Space of A Sliding Door 

Variables Minimum Maximum Levels StDev

a 0.1 0.4 4 0.03
b 0.5 1.5 3 0.03
c 8 10 3 0.08
d 12 14 3 0.1
θ 45 80 5 4  
 
After choosing design space, number of levels and standard deviation of each variable, we 

then create an appropriate experiment matrix. Since we have analytical expressions of the system 
performance and its variation, the outputs of the experiment are obvious. In our case we apply a 
full factorial design generated from DOE Pro XL or Minitab and then generated the values of 
Clearance and its standard deviation using their explicit formulas in MS Excel. 

 
Global Sensitivity Analysis 

 

Having got experimental outputs, we analyze the sensitivity of the Clearance and its standard 
deviation in relation to the design variables on their chosen design space. Global Sensitivity 
analysis is very important to rank the important of the design variables, especially in sequential 
design of experiments to identify the effective design variables included in design. ANOVA is one 
tool to get the Global Sensitivity of the system performance, as shown in Table 2 obtained from 
DOE PRO XL:  

 
Table 2. ANOVA Analysis of A Sliding Door DOE 
ANOVA TABLE

Clr StDev(Clr)
Source SS df MS F P % Contrib Source SS df MS F P % Contrib

a 10.7 3 3.6 0.000 0.96% a 638.4 3 212.8 0.000 86.63%
b 360.0 2 180.0 0.000 32.39% b 0.0000 2 0.0000 1.000 0.00%
c 360.0 2 180.0 0.000 32.39% c 0.0000 2 0.0000 1.000 0.00%
d 360.0 2 180.0 0.000 32.39% d 0.0000 2 0.0000 1.000 0.00%

theta 17.2 4 4.3 0.000 1.55% theta 82.1 4 20.5 0.000 11.14%
AE 3.4487 12 0.2874 0.000 0.31% AE 16.5 12 1.4 0.000 2.24%

Error 0.000 514 0.000 0.00% Error 0.000 514 0.000 0.00%
Total 1111.398 539 Total 737.013 539  

 
The ANOVA table shows that a and theta have about 98% influence to minimize 

performance variability (StDev(Clr)) and b, c and d have about 97 % influence to optimize the 
performance mean (Clr). Small interaction between a and theta occurs to both of the performance 
variability and mean.  

 
Graphical Approach: 

The direction to find the best settings of the variables can be searched through the main effect 
and interaction plots of the experimental results as shown in Figure 5 which was obtained from 
Minitab. 
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The plots give directions that decreasing a and increasing theta will minimize performance 
variability and selecting settings for b, c and d will adjust the performance mean to target, but they 
don’t affect the performance variability. This approach is called Graphical Approach. As a note: in 
order to optimize the base line design to its target, without considering robustness, we would 
intuitively increase a and decrease theta. This would get an optimal solution, but the solution 
would not be necessarily robust. 
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Figure 5. Main Effect and Interaction Plots of A Sliding Door DOE 

 
Mathematical Programming 

Graphical Approach cannot provide an easy way to find optimal and robust solutions when 
we have multiple performances or the interactions among the design variable are significant. In 
such kind of situation, we need to apply what is called Mathematical Programming Approach, e.g. 
Dual Response Optimization for performance mean and variability problems or Desirability 
Function Method like approaches for multiple performances. 

Dual Response Optimization is to minimize StDev(Clr)  subject to Clr on target and the 
design variables in design space. This can be implemented by using add-in MS Excel Solver. 

In many cases each performance has different magnitudes. One way to normalize each 
performance into values between 0 and 1 is to implement Desirability Function Method. 
Optimizing Clr is to find its best nominal values. Optimizing σ(Clr) is to minimize σ(Clr).   

Once performances are converted into individual desirability which has values between 0 
and 1, weighted geometric mean aggregate methods may be used to combine the individual 
desirability. Finally, optimize the aggregate value is equivalently to optimize each individual 
performance, i.e. Clearance and its standard deviation. Multiple objective optimizations will 
generally end up with what are called Pareto Optimal Solutions. These solutions are suitable to 
satisfy family of products whose performance targets are various. 
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The baseline design results compared to the optimal and robust design results using Minitab 
Optimizer which is based on Desirability Function method are given in Figure 6. 
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Figure 6. Baseline and Robust Results of A Sliding Door. 
 
The Robust Design gives performance mean close to the target, i.e. 0.8 with the  performance 

variability is only 0.83. The design is robust about 2.7 % than the base line design. Moreover, the 
Robust Design relaxes the theta tolerance from StDev = 4 to StDev = 5. 

 
Guide for Manufacturing and Quality Process 

From the equation of the variance of y for a point x0 above, the local sensitivity of the design 
variables is defined as 

 
  
 (3) 

 
 
The local sensitivity of the Robust Design using Crystal Ball Version 7 is given in Figure 7. It 

shows that Roller distance (c) and door height (d) are the most sensitive variables in relation to the 
system performance mean, as their influence to Clearance is as much as 80%. Track length (a) and 
roller angle (theta) are the only influential variables to the system performance variability. Those 
results can be applied as early identification to allow, e.g.: Quality Assurance people focus on 
variables c and d in their control process and Manufacturing or Supplier people to plan for 
variables c and d in their facility and tooling upfront.  

The Robust Design also identifies that variables a and theta have minimum influence to 
optimal performance mean. Therefore, the tolerance of both variables can be relaxed without 
loosing significantly the optimal and robust design. 
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Figure 7 Local Sensitivity Analysis of Baseline and Robust Designs of A Sliding Door. 
 

Monte Carlo Simulation 

In our case we have the explicit transfer functions of Clearance and its standard deviation and 
we know the distribution of the design variables, i.e. normal. With this information, we can use 
Monte Carlo simulation package software to find the best setting of the design variables for 
Robust Design. Figure 8 and Table 3 are the Monte Carlo simulation results of base line and 
robust designs obtained by using Crystal Ball version 7 for 10,000 trials. Opt-Clr is the average of 
the robust design result and Opt-StDev(Clr) is the standard deviation of the robust design result. 
BaseLine-Clr is the average of the base line result and BaseLine-StDev(Clr) is the standard 
deviation of the baseline result. 

 
Performance Means Performance VariabilityPerformance Means Performance Variability

 
 

Figure 8.Monte Carlo Simulation Results of Baseline and Robust Designs of A Sliding Door. 
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Table 3. ummary Statistics of Monte Carlo Simulation Results of Baseline and Robust 
Designs of A Sliding Door. 

Statistics (mm) BaseLine-Clr Opt-Clr BaseLine-StDev(Clr) Opt-StDev(Clr)
Average 1.65 0.85 0.147 0.143
StDev 0.15 0.14 0.16 0.01  
 
Table 3 shows that the robust design give an optimal average value, i.e. 0.85 mm and smaller 

and consistent (robust) standard deviation. i.e. 0.143 mm. The robust standard deviation (Opt-
StDev) is 16 times more consistent than base line standard deviation (BaseLine-StDev). 
 
4.2 Designing Tolerance  

 
The similar process shown above can be repeated to get the optimal tolerance for each design 

variables. This is about how to economically allocate the performance tolerance to the tolerance of 
the controllable and un-controllable variables. The algorithm is to fix the design variables at values 
to get the optimal and robust design and then to change the deviation of the variables. In this 
example we choose 5 levels of standard deviations, i.e. the baseline, baseline-50% of the baseline, 
baseline-25% of the baseline, baseline+25% of the baseline and baseline+50% of the baseline (see 
Table 4).  

 
Table 4.Design Space For Tolerance Design of A Sliding Door. 

Mean Values
Robust Design B-50%*B B-25%*B Baseline(B) B+50%*B B+100%*B

a 0.1 0.015 0.023 0.030 0.045 0.060
b 1.1 0.015 0.023 0.030 0.045 0.060
c 9.9 0.04 0.06 0.08 0.12 0.16
d 13 0.05 0.08 0.10 0.15 0.20

theta 75 2.50 3.75 5.00 7.50 10.00

Variables
Standard Deviation

 
 
The main effect plot (see Figure 9) and the sensitivity analysis (see Table 5) derived from the 

results of full factorial design experiments show that a and theta are insensitive to the changing of 
their tolerance and the most sensitive variable is door height (d), i.e. 61.18%. The process control 
should focus on this variable. 
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Figure 9. Main Effect Plot of Tolerance Design of A Sliding Door 
 

Table 5. ANOVA Analysis of Tolerance Design of A Sliding Door 

Source SS Si % TS(i)% Adj. TS(i)% Total Main 
Effect

Total 
Interaction

SDa 0.000 0.00 0.00 0.00 98.30 1.70
SDb 0.770 10.46 11.17 10.98
SDc 1.993 27.06 28.33 27.84
SDd 4.476 60.78 62.26 61.18

SDtheta 0.000 0.00 0.00 0.00
SDb*SDc 0.017 0.22
SDb*SDd 0.032 0.43
SDc*SDd 0.073 0.99

SDb*SDc*SDd 0.004 0.06
SDa*SDtheta 0.000 0.00

Total 7.364 100.00 101.76  
 

5.  CONCLUSIONS 
 
¾ The ultimate goal of DfSS is to have products or processes which are insensitive to the sources 

of variation that inhibit their intended function. This means that DfSS produces consistent 
products or processes within or, even, beyond customer’s quality expectation. 

¾ DfSS comprehends the relationship between the product or process performances and the 
product or process controllable and uncontrollable variables. This provides a guide to Product 
Development Process to avoid over or under designs and drive focus on design essentials. 
Thus, DfSS shortens the product development cycles and reduces cost. 
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¾ DfSS shows early identification of customer critical and un-critical factors (characteristics) that 
allows manufacturing to plan for those factors in their facility and tooling upfront. This 
provides a guide to manufacturing and quality processes. Thus, DfSS speeds up delivery, 
improves quality and prevent cost of poor quality. 

¾ Once the functional subsystem is completely understood DfSS provides a quality opportunity 
with replication of the methodologies on other applications. Thus, DfSS improves 
organizational design knowledge. 
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